Evaluate
11
Factor
11
Share
Copied to clipboard
\begin{array}{l}\phantom{20)}\phantom{1}\\20\overline{)220}\\\end{array}
Use the 1^{st} digit 2 from dividend 220
\begin{array}{l}\phantom{20)}0\phantom{2}\\20\overline{)220}\\\end{array}
Since 2 is less than 20, use the next digit 2 from dividend 220 and add 0 to the quotient
\begin{array}{l}\phantom{20)}0\phantom{3}\\20\overline{)220}\\\end{array}
Use the 2^{nd} digit 2 from dividend 220
\begin{array}{l}\phantom{20)}01\phantom{4}\\20\overline{)220}\\\phantom{20)}\underline{\phantom{}20\phantom{9}}\\\phantom{20)9}2\\\end{array}
Find closest multiple of 20 to 22. We see that 1 \times 20 = 20 is the nearest. Now subtract 20 from 22 to get reminder 2. Add 1 to quotient.
\begin{array}{l}\phantom{20)}01\phantom{5}\\20\overline{)220}\\\phantom{20)}\underline{\phantom{}20\phantom{9}}\\\phantom{20)9}20\\\end{array}
Use the 3^{rd} digit 0 from dividend 220
\begin{array}{l}\phantom{20)}011\phantom{6}\\20\overline{)220}\\\phantom{20)}\underline{\phantom{}20\phantom{9}}\\\phantom{20)9}20\\\phantom{20)}\underline{\phantom{9}20\phantom{}}\\\phantom{20)999}0\\\end{array}
Find closest multiple of 20 to 20. We see that 1 \times 20 = 20 is the nearest. Now subtract 20 from 20 to get reminder 0. Add 1 to quotient.
\text{Quotient: }11 \text{Reminder: }0
Since 0 is less than 20, stop the division. The reminder is 0. The topmost line 011 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}