Evaluate
\frac{20}{3}\approx 6.666666667
Factor
\frac{2 ^ {2} \cdot 5}{3} = 6\frac{2}{3} = 6.666666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{33)}\phantom{1}\\33\overline{)220}\\\end{array}
Use the 1^{st} digit 2 from dividend 220
\begin{array}{l}\phantom{33)}0\phantom{2}\\33\overline{)220}\\\end{array}
Since 2 is less than 33, use the next digit 2 from dividend 220 and add 0 to the quotient
\begin{array}{l}\phantom{33)}0\phantom{3}\\33\overline{)220}\\\end{array}
Use the 2^{nd} digit 2 from dividend 220
\begin{array}{l}\phantom{33)}00\phantom{4}\\33\overline{)220}\\\end{array}
Since 22 is less than 33, use the next digit 0 from dividend 220 and add 0 to the quotient
\begin{array}{l}\phantom{33)}00\phantom{5}\\33\overline{)220}\\\end{array}
Use the 3^{rd} digit 0 from dividend 220
\begin{array}{l}\phantom{33)}006\phantom{6}\\33\overline{)220}\\\phantom{33)}\underline{\phantom{}198\phantom{}}\\\phantom{33)9}22\\\end{array}
Find closest multiple of 33 to 220. We see that 6 \times 33 = 198 is the nearest. Now subtract 198 from 220 to get reminder 22. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }22
Since 22 is less than 33, stop the division. The reminder is 22. The topmost line 006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}