Solve for x
x=\frac{\sqrt{155}+1}{22}\approx 0.611359073
x=\frac{1-\sqrt{155}}{22}\approx -0.520449982
Graph
Share
Copied to clipboard
22x^{2}-2x=7
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
22x^{2}-2x-7=7-7
Subtract 7 from both sides of the equation.
22x^{2}-2x-7=0
Subtracting 7 from itself leaves 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 22\left(-7\right)}}{2\times 22}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 22 for a, -2 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 22\left(-7\right)}}{2\times 22}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-88\left(-7\right)}}{2\times 22}
Multiply -4 times 22.
x=\frac{-\left(-2\right)±\sqrt{4+616}}{2\times 22}
Multiply -88 times -7.
x=\frac{-\left(-2\right)±\sqrt{620}}{2\times 22}
Add 4 to 616.
x=\frac{-\left(-2\right)±2\sqrt{155}}{2\times 22}
Take the square root of 620.
x=\frac{2±2\sqrt{155}}{2\times 22}
The opposite of -2 is 2.
x=\frac{2±2\sqrt{155}}{44}
Multiply 2 times 22.
x=\frac{2\sqrt{155}+2}{44}
Now solve the equation x=\frac{2±2\sqrt{155}}{44} when ± is plus. Add 2 to 2\sqrt{155}.
x=\frac{\sqrt{155}+1}{22}
Divide 2+2\sqrt{155} by 44.
x=\frac{2-2\sqrt{155}}{44}
Now solve the equation x=\frac{2±2\sqrt{155}}{44} when ± is minus. Subtract 2\sqrt{155} from 2.
x=\frac{1-\sqrt{155}}{22}
Divide 2-2\sqrt{155} by 44.
x=\frac{\sqrt{155}+1}{22} x=\frac{1-\sqrt{155}}{22}
The equation is now solved.
22x^{2}-2x=7
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{22x^{2}-2x}{22}=\frac{7}{22}
Divide both sides by 22.
x^{2}+\left(-\frac{2}{22}\right)x=\frac{7}{22}
Dividing by 22 undoes the multiplication by 22.
x^{2}-\frac{1}{11}x=\frac{7}{22}
Reduce the fraction \frac{-2}{22} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{1}{11}x+\left(-\frac{1}{22}\right)^{2}=\frac{7}{22}+\left(-\frac{1}{22}\right)^{2}
Divide -\frac{1}{11}, the coefficient of the x term, by 2 to get -\frac{1}{22}. Then add the square of -\frac{1}{22} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{11}x+\frac{1}{484}=\frac{7}{22}+\frac{1}{484}
Square -\frac{1}{22} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{11}x+\frac{1}{484}=\frac{155}{484}
Add \frac{7}{22} to \frac{1}{484} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{22}\right)^{2}=\frac{155}{484}
Factor x^{2}-\frac{1}{11}x+\frac{1}{484}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{22}\right)^{2}}=\sqrt{\frac{155}{484}}
Take the square root of both sides of the equation.
x-\frac{1}{22}=\frac{\sqrt{155}}{22} x-\frac{1}{22}=-\frac{\sqrt{155}}{22}
Simplify.
x=\frac{\sqrt{155}+1}{22} x=\frac{1-\sqrt{155}}{22}
Add \frac{1}{22} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}