Solve for x
x=\frac{2\sqrt{730}}{5}+11\approx 21.807404869
x=-\frac{2\sqrt{730}}{5}+11\approx 0.192595131
Graph
Share
Copied to clipboard
22\times 100000=10^{5}+\frac{1000}{20\times 10^{-4}}\left(22-x\right)x
Calculate 10 to the power of 5 and get 100000.
2200000=10^{5}+\frac{1000}{20\times 10^{-4}}\left(22-x\right)x
Multiply 22 and 100000 to get 2200000.
2200000=100000+\frac{1000}{20\times 10^{-4}}\left(22-x\right)x
Calculate 10 to the power of 5 and get 100000.
2200000=100000+\frac{1000}{20\times \frac{1}{10000}}\left(22-x\right)x
Calculate 10 to the power of -4 and get \frac{1}{10000}.
2200000=100000+\frac{1000}{\frac{1}{500}}\left(22-x\right)x
Multiply 20 and \frac{1}{10000} to get \frac{1}{500}.
2200000=100000+1000\times 500\left(22-x\right)x
Divide 1000 by \frac{1}{500} by multiplying 1000 by the reciprocal of \frac{1}{500}.
2200000=100000+500000\left(22-x\right)x
Multiply 1000 and 500 to get 500000.
2200000=100000+\left(11000000-500000x\right)x
Use the distributive property to multiply 500000 by 22-x.
2200000=100000+11000000x-500000x^{2}
Use the distributive property to multiply 11000000-500000x by x.
100000+11000000x-500000x^{2}=2200000
Swap sides so that all variable terms are on the left hand side.
100000+11000000x-500000x^{2}-2200000=0
Subtract 2200000 from both sides.
-2100000+11000000x-500000x^{2}=0
Subtract 2200000 from 100000 to get -2100000.
-500000x^{2}+11000000x-2100000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-11000000±\sqrt{11000000^{2}-4\left(-500000\right)\left(-2100000\right)}}{2\left(-500000\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -500000 for a, 11000000 for b, and -2100000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11000000±\sqrt{121000000000000-4\left(-500000\right)\left(-2100000\right)}}{2\left(-500000\right)}
Square 11000000.
x=\frac{-11000000±\sqrt{121000000000000+2000000\left(-2100000\right)}}{2\left(-500000\right)}
Multiply -4 times -500000.
x=\frac{-11000000±\sqrt{121000000000000-4200000000000}}{2\left(-500000\right)}
Multiply 2000000 times -2100000.
x=\frac{-11000000±\sqrt{116800000000000}}{2\left(-500000\right)}
Add 121000000000000 to -4200000000000.
x=\frac{-11000000±400000\sqrt{730}}{2\left(-500000\right)}
Take the square root of 116800000000000.
x=\frac{-11000000±400000\sqrt{730}}{-1000000}
Multiply 2 times -500000.
x=\frac{400000\sqrt{730}-11000000}{-1000000}
Now solve the equation x=\frac{-11000000±400000\sqrt{730}}{-1000000} when ± is plus. Add -11000000 to 400000\sqrt{730}.
x=-\frac{2\sqrt{730}}{5}+11
Divide -11000000+400000\sqrt{730} by -1000000.
x=\frac{-400000\sqrt{730}-11000000}{-1000000}
Now solve the equation x=\frac{-11000000±400000\sqrt{730}}{-1000000} when ± is minus. Subtract 400000\sqrt{730} from -11000000.
x=\frac{2\sqrt{730}}{5}+11
Divide -11000000-400000\sqrt{730} by -1000000.
x=-\frac{2\sqrt{730}}{5}+11 x=\frac{2\sqrt{730}}{5}+11
The equation is now solved.
22\times 100000=10^{5}+\frac{1000}{20\times 10^{-4}}\left(22-x\right)x
Calculate 10 to the power of 5 and get 100000.
2200000=10^{5}+\frac{1000}{20\times 10^{-4}}\left(22-x\right)x
Multiply 22 and 100000 to get 2200000.
2200000=100000+\frac{1000}{20\times 10^{-4}}\left(22-x\right)x
Calculate 10 to the power of 5 and get 100000.
2200000=100000+\frac{1000}{20\times \frac{1}{10000}}\left(22-x\right)x
Calculate 10 to the power of -4 and get \frac{1}{10000}.
2200000=100000+\frac{1000}{\frac{1}{500}}\left(22-x\right)x
Multiply 20 and \frac{1}{10000} to get \frac{1}{500}.
2200000=100000+1000\times 500\left(22-x\right)x
Divide 1000 by \frac{1}{500} by multiplying 1000 by the reciprocal of \frac{1}{500}.
2200000=100000+500000\left(22-x\right)x
Multiply 1000 and 500 to get 500000.
2200000=100000+\left(11000000-500000x\right)x
Use the distributive property to multiply 500000 by 22-x.
2200000=100000+11000000x-500000x^{2}
Use the distributive property to multiply 11000000-500000x by x.
100000+11000000x-500000x^{2}=2200000
Swap sides so that all variable terms are on the left hand side.
11000000x-500000x^{2}=2200000-100000
Subtract 100000 from both sides.
11000000x-500000x^{2}=2100000
Subtract 100000 from 2200000 to get 2100000.
-500000x^{2}+11000000x=2100000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-500000x^{2}+11000000x}{-500000}=\frac{2100000}{-500000}
Divide both sides by -500000.
x^{2}+\frac{11000000}{-500000}x=\frac{2100000}{-500000}
Dividing by -500000 undoes the multiplication by -500000.
x^{2}-22x=\frac{2100000}{-500000}
Divide 11000000 by -500000.
x^{2}-22x=-\frac{21}{5}
Reduce the fraction \frac{2100000}{-500000} to lowest terms by extracting and canceling out 100000.
x^{2}-22x+\left(-11\right)^{2}=-\frac{21}{5}+\left(-11\right)^{2}
Divide -22, the coefficient of the x term, by 2 to get -11. Then add the square of -11 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-22x+121=-\frac{21}{5}+121
Square -11.
x^{2}-22x+121=\frac{584}{5}
Add -\frac{21}{5} to 121.
\left(x-11\right)^{2}=\frac{584}{5}
Factor x^{2}-22x+121. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-11\right)^{2}}=\sqrt{\frac{584}{5}}
Take the square root of both sides of the equation.
x-11=\frac{2\sqrt{730}}{5} x-11=-\frac{2\sqrt{730}}{5}
Simplify.
x=\frac{2\sqrt{730}}{5}+11 x=-\frac{2\sqrt{730}}{5}+11
Add 11 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}