Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

110=4\times 9t^{2}
Multiply 22 and 5 to get 110.
110=36t^{2}
Multiply 4 and 9 to get 36.
36t^{2}=110
Swap sides so that all variable terms are on the left hand side.
t^{2}=\frac{110}{36}
Divide both sides by 36.
t^{2}=\frac{55}{18}
Reduce the fraction \frac{110}{36} to lowest terms by extracting and canceling out 2.
t=\frac{\sqrt{110}}{6} t=-\frac{\sqrt{110}}{6}
Take the square root of both sides of the equation.
110=4\times 9t^{2}
Multiply 22 and 5 to get 110.
110=36t^{2}
Multiply 4 and 9 to get 36.
36t^{2}=110
Swap sides so that all variable terms are on the left hand side.
36t^{2}-110=0
Subtract 110 from both sides.
t=\frac{0±\sqrt{0^{2}-4\times 36\left(-110\right)}}{2\times 36}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 36 for a, 0 for b, and -110 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\times 36\left(-110\right)}}{2\times 36}
Square 0.
t=\frac{0±\sqrt{-144\left(-110\right)}}{2\times 36}
Multiply -4 times 36.
t=\frac{0±\sqrt{15840}}{2\times 36}
Multiply -144 times -110.
t=\frac{0±12\sqrt{110}}{2\times 36}
Take the square root of 15840.
t=\frac{0±12\sqrt{110}}{72}
Multiply 2 times 36.
t=\frac{\sqrt{110}}{6}
Now solve the equation t=\frac{0±12\sqrt{110}}{72} when ± is plus.
t=-\frac{\sqrt{110}}{6}
Now solve the equation t=\frac{0±12\sqrt{110}}{72} when ± is minus.
t=\frac{\sqrt{110}}{6} t=-\frac{\sqrt{110}}{6}
The equation is now solved.