Evaluate
\frac{217}{17}\approx 12.764705882
Factor
\frac{7 \cdot 31}{17} = 12\frac{13}{17} = 12.764705882352942
Share
Copied to clipboard
\begin{array}{l}\phantom{17)}\phantom{1}\\17\overline{)217}\\\end{array}
Use the 1^{st} digit 2 from dividend 217
\begin{array}{l}\phantom{17)}0\phantom{2}\\17\overline{)217}\\\end{array}
Since 2 is less than 17, use the next digit 1 from dividend 217 and add 0 to the quotient
\begin{array}{l}\phantom{17)}0\phantom{3}\\17\overline{)217}\\\end{array}
Use the 2^{nd} digit 1 from dividend 217
\begin{array}{l}\phantom{17)}01\phantom{4}\\17\overline{)217}\\\phantom{17)}\underline{\phantom{}17\phantom{9}}\\\phantom{17)9}4\\\end{array}
Find closest multiple of 17 to 21. We see that 1 \times 17 = 17 is the nearest. Now subtract 17 from 21 to get reminder 4. Add 1 to quotient.
\begin{array}{l}\phantom{17)}01\phantom{5}\\17\overline{)217}\\\phantom{17)}\underline{\phantom{}17\phantom{9}}\\\phantom{17)9}47\\\end{array}
Use the 3^{rd} digit 7 from dividend 217
\begin{array}{l}\phantom{17)}012\phantom{6}\\17\overline{)217}\\\phantom{17)}\underline{\phantom{}17\phantom{9}}\\\phantom{17)9}47\\\phantom{17)}\underline{\phantom{9}34\phantom{}}\\\phantom{17)9}13\\\end{array}
Find closest multiple of 17 to 47. We see that 2 \times 17 = 34 is the nearest. Now subtract 34 from 47 to get reminder 13. Add 2 to quotient.
\text{Quotient: }12 \text{Reminder: }13
Since 13 is less than 17, stop the division. The reminder is 13. The topmost line 012 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}