Evaluate
\frac{1081}{110}\approx 9.827272727
Factor
\frac{23 \cdot 47}{2 \cdot 5 \cdot 11} = 9\frac{91}{110} = 9.827272727272728
Share
Copied to clipboard
\begin{array}{l}\phantom{220)}\phantom{1}\\220\overline{)2162}\\\end{array}
Use the 1^{st} digit 2 from dividend 2162
\begin{array}{l}\phantom{220)}0\phantom{2}\\220\overline{)2162}\\\end{array}
Since 2 is less than 220, use the next digit 1 from dividend 2162 and add 0 to the quotient
\begin{array}{l}\phantom{220)}0\phantom{3}\\220\overline{)2162}\\\end{array}
Use the 2^{nd} digit 1 from dividend 2162
\begin{array}{l}\phantom{220)}00\phantom{4}\\220\overline{)2162}\\\end{array}
Since 21 is less than 220, use the next digit 6 from dividend 2162 and add 0 to the quotient
\begin{array}{l}\phantom{220)}00\phantom{5}\\220\overline{)2162}\\\end{array}
Use the 3^{rd} digit 6 from dividend 2162
\begin{array}{l}\phantom{220)}000\phantom{6}\\220\overline{)2162}\\\end{array}
Since 216 is less than 220, use the next digit 2 from dividend 2162 and add 0 to the quotient
\begin{array}{l}\phantom{220)}000\phantom{7}\\220\overline{)2162}\\\end{array}
Use the 4^{th} digit 2 from dividend 2162
\begin{array}{l}\phantom{220)}0009\phantom{8}\\220\overline{)2162}\\\phantom{220)}\underline{\phantom{}1980\phantom{}}\\\phantom{220)9}182\\\end{array}
Find closest multiple of 220 to 2162. We see that 9 \times 220 = 1980 is the nearest. Now subtract 1980 from 2162 to get reminder 182. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }182
Since 182 is less than 220, stop the division. The reminder is 182. The topmost line 0009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}