Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

212x^{2}=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
x^{2}=-\frac{5}{212}
Divide both sides by 212.
x=\frac{\sqrt{265}i}{106} x=-\frac{\sqrt{265}i}{106}
The equation is now solved.
212x^{2}+5=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 212\times 5}}{2\times 212}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 212 for a, 0 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 212\times 5}}{2\times 212}
Square 0.
x=\frac{0±\sqrt{-848\times 5}}{2\times 212}
Multiply -4 times 212.
x=\frac{0±\sqrt{-4240}}{2\times 212}
Multiply -848 times 5.
x=\frac{0±4\sqrt{265}i}{2\times 212}
Take the square root of -4240.
x=\frac{0±4\sqrt{265}i}{424}
Multiply 2 times 212.
x=\frac{\sqrt{265}i}{106}
Now solve the equation x=\frac{0±4\sqrt{265}i}{424} when ± is plus.
x=-\frac{\sqrt{265}i}{106}
Now solve the equation x=\frac{0±4\sqrt{265}i}{424} when ± is minus.
x=\frac{\sqrt{265}i}{106} x=-\frac{\sqrt{265}i}{106}
The equation is now solved.