Skip to main content
Solve for p
Tick mark Image

Similar Problems from Web Search

Share

-3p^{2}+132p=2100
Swap sides so that all variable terms are on the left hand side.
-3p^{2}+132p-2100=0
Subtract 2100 from both sides.
p=\frac{-132±\sqrt{132^{2}-4\left(-3\right)\left(-2100\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 132 for b, and -2100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-132±\sqrt{17424-4\left(-3\right)\left(-2100\right)}}{2\left(-3\right)}
Square 132.
p=\frac{-132±\sqrt{17424+12\left(-2100\right)}}{2\left(-3\right)}
Multiply -4 times -3.
p=\frac{-132±\sqrt{17424-25200}}{2\left(-3\right)}
Multiply 12 times -2100.
p=\frac{-132±\sqrt{-7776}}{2\left(-3\right)}
Add 17424 to -25200.
p=\frac{-132±36\sqrt{6}i}{2\left(-3\right)}
Take the square root of -7776.
p=\frac{-132±36\sqrt{6}i}{-6}
Multiply 2 times -3.
p=\frac{-132+36\sqrt{6}i}{-6}
Now solve the equation p=\frac{-132±36\sqrt{6}i}{-6} when ± is plus. Add -132 to 36i\sqrt{6}.
p=-6\sqrt{6}i+22
Divide -132+36i\sqrt{6} by -6.
p=\frac{-36\sqrt{6}i-132}{-6}
Now solve the equation p=\frac{-132±36\sqrt{6}i}{-6} when ± is minus. Subtract 36i\sqrt{6} from -132.
p=22+6\sqrt{6}i
Divide -132-36i\sqrt{6} by -6.
p=-6\sqrt{6}i+22 p=22+6\sqrt{6}i
The equation is now solved.
-3p^{2}+132p=2100
Swap sides so that all variable terms are on the left hand side.
\frac{-3p^{2}+132p}{-3}=\frac{2100}{-3}
Divide both sides by -3.
p^{2}+\frac{132}{-3}p=\frac{2100}{-3}
Dividing by -3 undoes the multiplication by -3.
p^{2}-44p=\frac{2100}{-3}
Divide 132 by -3.
p^{2}-44p=-700
Divide 2100 by -3.
p^{2}-44p+\left(-22\right)^{2}=-700+\left(-22\right)^{2}
Divide -44, the coefficient of the x term, by 2 to get -22. Then add the square of -22 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}-44p+484=-700+484
Square -22.
p^{2}-44p+484=-216
Add -700 to 484.
\left(p-22\right)^{2}=-216
Factor p^{2}-44p+484. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-22\right)^{2}}=\sqrt{-216}
Take the square root of both sides of the equation.
p-22=6\sqrt{6}i p-22=-6\sqrt{6}i
Simplify.
p=22+6\sqrt{6}i p=-6\sqrt{6}i+22
Add 22 to both sides of the equation.