Skip to main content
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

21k^{2}-60k+32=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
k=\frac{-\left(-60\right)±\sqrt{\left(-60\right)^{2}-4\times 21\times 32}}{2\times 21}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 21 for a, -60 for b, and 32 for c in the quadratic formula.
k=\frac{60±4\sqrt{57}}{42}
Do the calculations.
k=\frac{2\sqrt{57}}{21}+\frac{10}{7} k=-\frac{2\sqrt{57}}{21}+\frac{10}{7}
Solve the equation k=\frac{60±4\sqrt{57}}{42} when ± is plus and when ± is minus.
21\left(k-\left(\frac{2\sqrt{57}}{21}+\frac{10}{7}\right)\right)\left(k-\left(-\frac{2\sqrt{57}}{21}+\frac{10}{7}\right)\right)<0
Rewrite the inequality by using the obtained solutions.
k-\left(\frac{2\sqrt{57}}{21}+\frac{10}{7}\right)>0 k-\left(-\frac{2\sqrt{57}}{21}+\frac{10}{7}\right)<0
For the product to be negative, k-\left(\frac{2\sqrt{57}}{21}+\frac{10}{7}\right) and k-\left(-\frac{2\sqrt{57}}{21}+\frac{10}{7}\right) have to be of the opposite signs. Consider the case when k-\left(\frac{2\sqrt{57}}{21}+\frac{10}{7}\right) is positive and k-\left(-\frac{2\sqrt{57}}{21}+\frac{10}{7}\right) is negative.
k\in \emptyset
This is false for any k.
k-\left(-\frac{2\sqrt{57}}{21}+\frac{10}{7}\right)>0 k-\left(\frac{2\sqrt{57}}{21}+\frac{10}{7}\right)<0
Consider the case when k-\left(-\frac{2\sqrt{57}}{21}+\frac{10}{7}\right) is positive and k-\left(\frac{2\sqrt{57}}{21}+\frac{10}{7}\right) is negative.
k\in \left(-\frac{2\sqrt{57}}{21}+\frac{10}{7},\frac{2\sqrt{57}}{21}+\frac{10}{7}\right)
The solution satisfying both inequalities is k\in \left(-\frac{2\sqrt{57}}{21}+\frac{10}{7},\frac{2\sqrt{57}}{21}+\frac{10}{7}\right).
k\in \left(-\frac{2\sqrt{57}}{21}+\frac{10}{7},\frac{2\sqrt{57}}{21}+\frac{10}{7}\right)
The final solution is the union of the obtained solutions.