Factor
\left(3x+4\right)\left(7x+9\right)
Evaluate
\left(3x+4\right)\left(7x+9\right)
Graph
Share
Copied to clipboard
a+b=55 ab=21\times 36=756
Factor the expression by grouping. First, the expression needs to be rewritten as 21x^{2}+ax+bx+36. To find a and b, set up a system to be solved.
1,756 2,378 3,252 4,189 6,126 7,108 9,84 12,63 14,54 18,42 21,36 27,28
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 756.
1+756=757 2+378=380 3+252=255 4+189=193 6+126=132 7+108=115 9+84=93 12+63=75 14+54=68 18+42=60 21+36=57 27+28=55
Calculate the sum for each pair.
a=27 b=28
The solution is the pair that gives sum 55.
\left(21x^{2}+27x\right)+\left(28x+36\right)
Rewrite 21x^{2}+55x+36 as \left(21x^{2}+27x\right)+\left(28x+36\right).
3x\left(7x+9\right)+4\left(7x+9\right)
Factor out 3x in the first and 4 in the second group.
\left(7x+9\right)\left(3x+4\right)
Factor out common term 7x+9 by using distributive property.
21x^{2}+55x+36=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-55±\sqrt{55^{2}-4\times 21\times 36}}{2\times 21}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-55±\sqrt{3025-4\times 21\times 36}}{2\times 21}
Square 55.
x=\frac{-55±\sqrt{3025-84\times 36}}{2\times 21}
Multiply -4 times 21.
x=\frac{-55±\sqrt{3025-3024}}{2\times 21}
Multiply -84 times 36.
x=\frac{-55±\sqrt{1}}{2\times 21}
Add 3025 to -3024.
x=\frac{-55±1}{2\times 21}
Take the square root of 1.
x=\frac{-55±1}{42}
Multiply 2 times 21.
x=-\frac{54}{42}
Now solve the equation x=\frac{-55±1}{42} when ± is plus. Add -55 to 1.
x=-\frac{9}{7}
Reduce the fraction \frac{-54}{42} to lowest terms by extracting and canceling out 6.
x=-\frac{56}{42}
Now solve the equation x=\frac{-55±1}{42} when ± is minus. Subtract 1 from -55.
x=-\frac{4}{3}
Reduce the fraction \frac{-56}{42} to lowest terms by extracting and canceling out 14.
21x^{2}+55x+36=21\left(x-\left(-\frac{9}{7}\right)\right)\left(x-\left(-\frac{4}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{9}{7} for x_{1} and -\frac{4}{3} for x_{2}.
21x^{2}+55x+36=21\left(x+\frac{9}{7}\right)\left(x+\frac{4}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
21x^{2}+55x+36=21\times \frac{7x+9}{7}\left(x+\frac{4}{3}\right)
Add \frac{9}{7} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
21x^{2}+55x+36=21\times \frac{7x+9}{7}\times \frac{3x+4}{3}
Add \frac{4}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
21x^{2}+55x+36=21\times \frac{\left(7x+9\right)\left(3x+4\right)}{7\times 3}
Multiply \frac{7x+9}{7} times \frac{3x+4}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
21x^{2}+55x+36=21\times \frac{\left(7x+9\right)\left(3x+4\right)}{21}
Multiply 7 times 3.
21x^{2}+55x+36=\left(7x+9\right)\left(3x+4\right)
Cancel out 21, the greatest common factor in 21 and 21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}