Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

-10m^{2}+m+21
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=1 ab=-10\times 21=-210
Factor the expression by grouping. First, the expression needs to be rewritten as -10m^{2}+am+bm+21. To find a and b, set up a system to be solved.
-1,210 -2,105 -3,70 -5,42 -6,35 -7,30 -10,21 -14,15
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -210.
-1+210=209 -2+105=103 -3+70=67 -5+42=37 -6+35=29 -7+30=23 -10+21=11 -14+15=1
Calculate the sum for each pair.
a=15 b=-14
The solution is the pair that gives sum 1.
\left(-10m^{2}+15m\right)+\left(-14m+21\right)
Rewrite -10m^{2}+m+21 as \left(-10m^{2}+15m\right)+\left(-14m+21\right).
-5m\left(2m-3\right)-7\left(2m-3\right)
Factor out -5m in the first and -7 in the second group.
\left(2m-3\right)\left(-5m-7\right)
Factor out common term 2m-3 by using distributive property.
-10m^{2}+m+21=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
m=\frac{-1±\sqrt{1^{2}-4\left(-10\right)\times 21}}{2\left(-10\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-1±\sqrt{1-4\left(-10\right)\times 21}}{2\left(-10\right)}
Square 1.
m=\frac{-1±\sqrt{1+40\times 21}}{2\left(-10\right)}
Multiply -4 times -10.
m=\frac{-1±\sqrt{1+840}}{2\left(-10\right)}
Multiply 40 times 21.
m=\frac{-1±\sqrt{841}}{2\left(-10\right)}
Add 1 to 840.
m=\frac{-1±29}{2\left(-10\right)}
Take the square root of 841.
m=\frac{-1±29}{-20}
Multiply 2 times -10.
m=\frac{28}{-20}
Now solve the equation m=\frac{-1±29}{-20} when ± is plus. Add -1 to 29.
m=-\frac{7}{5}
Reduce the fraction \frac{28}{-20} to lowest terms by extracting and canceling out 4.
m=-\frac{30}{-20}
Now solve the equation m=\frac{-1±29}{-20} when ± is minus. Subtract 29 from -1.
m=\frac{3}{2}
Reduce the fraction \frac{-30}{-20} to lowest terms by extracting and canceling out 10.
-10m^{2}+m+21=-10\left(m-\left(-\frac{7}{5}\right)\right)\left(m-\frac{3}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{7}{5} for x_{1} and \frac{3}{2} for x_{2}.
-10m^{2}+m+21=-10\left(m+\frac{7}{5}\right)\left(m-\frac{3}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-10m^{2}+m+21=-10\times \frac{-5m-7}{-5}\left(m-\frac{3}{2}\right)
Add \frac{7}{5} to m by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-10m^{2}+m+21=-10\times \frac{-5m-7}{-5}\times \frac{-2m+3}{-2}
Subtract \frac{3}{2} from m by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-10m^{2}+m+21=-10\times \frac{\left(-5m-7\right)\left(-2m+3\right)}{-5\left(-2\right)}
Multiply \frac{-5m-7}{-5} times \frac{-2m+3}{-2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
-10m^{2}+m+21=-10\times \frac{\left(-5m-7\right)\left(-2m+3\right)}{10}
Multiply -5 times -2.
-10m^{2}+m+21=-\left(-5m-7\right)\left(-2m+3\right)
Cancel out 10, the greatest common factor in -10 and 10.