Solve for x
x = \frac{\sqrt{1857} - 1}{2} \approx 21.046461426
x=\frac{-\sqrt{1857}-1}{2}\approx -22.046461426
Graph
Share
Copied to clipboard
85+82x+x^{2}+80=27+81x+602
Add 21 and 64 to get 85.
165+82x+x^{2}=27+81x+602
Add 85 and 80 to get 165.
165+82x+x^{2}=629+81x
Add 27 and 602 to get 629.
165+82x+x^{2}-629=81x
Subtract 629 from both sides.
-464+82x+x^{2}=81x
Subtract 629 from 165 to get -464.
-464+82x+x^{2}-81x=0
Subtract 81x from both sides.
-464+x+x^{2}=0
Combine 82x and -81x to get x.
x^{2}+x-464=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\left(-464\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 1 for b, and -464 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-464\right)}}{2}
Square 1.
x=\frac{-1±\sqrt{1+1856}}{2}
Multiply -4 times -464.
x=\frac{-1±\sqrt{1857}}{2}
Add 1 to 1856.
x=\frac{\sqrt{1857}-1}{2}
Now solve the equation x=\frac{-1±\sqrt{1857}}{2} when ± is plus. Add -1 to \sqrt{1857}.
x=\frac{-\sqrt{1857}-1}{2}
Now solve the equation x=\frac{-1±\sqrt{1857}}{2} when ± is minus. Subtract \sqrt{1857} from -1.
x=\frac{\sqrt{1857}-1}{2} x=\frac{-\sqrt{1857}-1}{2}
The equation is now solved.
85+82x+x^{2}+80=27+81x+602
Add 21 and 64 to get 85.
165+82x+x^{2}=27+81x+602
Add 85 and 80 to get 165.
165+82x+x^{2}=629+81x
Add 27 and 602 to get 629.
165+82x+x^{2}-81x=629
Subtract 81x from both sides.
165+x+x^{2}=629
Combine 82x and -81x to get x.
x+x^{2}=629-165
Subtract 165 from both sides.
x+x^{2}=464
Subtract 165 from 629 to get 464.
x^{2}+x=464
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=464+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=464+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{1857}{4}
Add 464 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{1857}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{1857}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{1857}}{2} x+\frac{1}{2}=-\frac{\sqrt{1857}}{2}
Simplify.
x=\frac{\sqrt{1857}-1}{2} x=\frac{-\sqrt{1857}-1}{2}
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}