20x=64-2( { x }^{ 2 }
Solve for x (complex solution)
x=\sqrt{57}-5\approx 2.549834435
x=-\left(\sqrt{57}+5\right)\approx -12.549834435
Solve for x
x=\sqrt{57}-5\approx 2.549834435
x=-\sqrt{57}-5\approx -12.549834435
Graph
Share
Copied to clipboard
20x-64=-2x^{2}
Subtract 64 from both sides.
20x-64+2x^{2}=0
Add 2x^{2} to both sides.
2x^{2}+20x-64=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-20±\sqrt{20^{2}-4\times 2\left(-64\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 20 for b, and -64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\times 2\left(-64\right)}}{2\times 2}
Square 20.
x=\frac{-20±\sqrt{400-8\left(-64\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-20±\sqrt{400+512}}{2\times 2}
Multiply -8 times -64.
x=\frac{-20±\sqrt{912}}{2\times 2}
Add 400 to 512.
x=\frac{-20±4\sqrt{57}}{2\times 2}
Take the square root of 912.
x=\frac{-20±4\sqrt{57}}{4}
Multiply 2 times 2.
x=\frac{4\sqrt{57}-20}{4}
Now solve the equation x=\frac{-20±4\sqrt{57}}{4} when ± is plus. Add -20 to 4\sqrt{57}.
x=\sqrt{57}-5
Divide -20+4\sqrt{57} by 4.
x=\frac{-4\sqrt{57}-20}{4}
Now solve the equation x=\frac{-20±4\sqrt{57}}{4} when ± is minus. Subtract 4\sqrt{57} from -20.
x=-\sqrt{57}-5
Divide -20-4\sqrt{57} by 4.
x=\sqrt{57}-5 x=-\sqrt{57}-5
The equation is now solved.
20x+2x^{2}=64
Add 2x^{2} to both sides.
2x^{2}+20x=64
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}+20x}{2}=\frac{64}{2}
Divide both sides by 2.
x^{2}+\frac{20}{2}x=\frac{64}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+10x=\frac{64}{2}
Divide 20 by 2.
x^{2}+10x=32
Divide 64 by 2.
x^{2}+10x+5^{2}=32+5^{2}
Divide 10, the coefficient of the x term, by 2 to get 5. Then add the square of 5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+10x+25=32+25
Square 5.
x^{2}+10x+25=57
Add 32 to 25.
\left(x+5\right)^{2}=57
Factor x^{2}+10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5\right)^{2}}=\sqrt{57}
Take the square root of both sides of the equation.
x+5=\sqrt{57} x+5=-\sqrt{57}
Simplify.
x=\sqrt{57}-5 x=-\sqrt{57}-5
Subtract 5 from both sides of the equation.
20x-64=-2x^{2}
Subtract 64 from both sides.
20x-64+2x^{2}=0
Add 2x^{2} to both sides.
2x^{2}+20x-64=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-20±\sqrt{20^{2}-4\times 2\left(-64\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 20 for b, and -64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\times 2\left(-64\right)}}{2\times 2}
Square 20.
x=\frac{-20±\sqrt{400-8\left(-64\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-20±\sqrt{400+512}}{2\times 2}
Multiply -8 times -64.
x=\frac{-20±\sqrt{912}}{2\times 2}
Add 400 to 512.
x=\frac{-20±4\sqrt{57}}{2\times 2}
Take the square root of 912.
x=\frac{-20±4\sqrt{57}}{4}
Multiply 2 times 2.
x=\frac{4\sqrt{57}-20}{4}
Now solve the equation x=\frac{-20±4\sqrt{57}}{4} when ± is plus. Add -20 to 4\sqrt{57}.
x=\sqrt{57}-5
Divide -20+4\sqrt{57} by 4.
x=\frac{-4\sqrt{57}-20}{4}
Now solve the equation x=\frac{-20±4\sqrt{57}}{4} when ± is minus. Subtract 4\sqrt{57} from -20.
x=-\sqrt{57}-5
Divide -20-4\sqrt{57} by 4.
x=\sqrt{57}-5 x=-\sqrt{57}-5
The equation is now solved.
20x+2x^{2}=64
Add 2x^{2} to both sides.
2x^{2}+20x=64
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}+20x}{2}=\frac{64}{2}
Divide both sides by 2.
x^{2}+\frac{20}{2}x=\frac{64}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+10x=\frac{64}{2}
Divide 20 by 2.
x^{2}+10x=32
Divide 64 by 2.
x^{2}+10x+5^{2}=32+5^{2}
Divide 10, the coefficient of the x term, by 2 to get 5. Then add the square of 5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+10x+25=32+25
Square 5.
x^{2}+10x+25=57
Add 32 to 25.
\left(x+5\right)^{2}=57
Factor x^{2}+10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5\right)^{2}}=\sqrt{57}
Take the square root of both sides of the equation.
x+5=\sqrt{57} x+5=-\sqrt{57}
Simplify.
x=\sqrt{57}-5 x=-\sqrt{57}-5
Subtract 5 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}