Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

20x^{2}\times 32+3x=100
Multiply x and x to get x^{2}.
640x^{2}+3x=100
Multiply 20 and 32 to get 640.
640x^{2}+3x-100=0
Subtract 100 from both sides.
x=\frac{-3±\sqrt{3^{2}-4\times 640\left(-100\right)}}{2\times 640}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 640 for a, 3 for b, and -100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 640\left(-100\right)}}{2\times 640}
Square 3.
x=\frac{-3±\sqrt{9-2560\left(-100\right)}}{2\times 640}
Multiply -4 times 640.
x=\frac{-3±\sqrt{9+256000}}{2\times 640}
Multiply -2560 times -100.
x=\frac{-3±\sqrt{256009}}{2\times 640}
Add 9 to 256000.
x=\frac{-3±\sqrt{256009}}{1280}
Multiply 2 times 640.
x=\frac{\sqrt{256009}-3}{1280}
Now solve the equation x=\frac{-3±\sqrt{256009}}{1280} when ± is plus. Add -3 to \sqrt{256009}.
x=\frac{-\sqrt{256009}-3}{1280}
Now solve the equation x=\frac{-3±\sqrt{256009}}{1280} when ± is minus. Subtract \sqrt{256009} from -3.
x=\frac{\sqrt{256009}-3}{1280} x=\frac{-\sqrt{256009}-3}{1280}
The equation is now solved.
20x^{2}\times 32+3x=100
Multiply x and x to get x^{2}.
640x^{2}+3x=100
Multiply 20 and 32 to get 640.
\frac{640x^{2}+3x}{640}=\frac{100}{640}
Divide both sides by 640.
x^{2}+\frac{3}{640}x=\frac{100}{640}
Dividing by 640 undoes the multiplication by 640.
x^{2}+\frac{3}{640}x=\frac{5}{32}
Reduce the fraction \frac{100}{640} to lowest terms by extracting and canceling out 20.
x^{2}+\frac{3}{640}x+\left(\frac{3}{1280}\right)^{2}=\frac{5}{32}+\left(\frac{3}{1280}\right)^{2}
Divide \frac{3}{640}, the coefficient of the x term, by 2 to get \frac{3}{1280}. Then add the square of \frac{3}{1280} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{640}x+\frac{9}{1638400}=\frac{5}{32}+\frac{9}{1638400}
Square \frac{3}{1280} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{640}x+\frac{9}{1638400}=\frac{256009}{1638400}
Add \frac{5}{32} to \frac{9}{1638400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{1280}\right)^{2}=\frac{256009}{1638400}
Factor x^{2}+\frac{3}{640}x+\frac{9}{1638400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{1280}\right)^{2}}=\sqrt{\frac{256009}{1638400}}
Take the square root of both sides of the equation.
x+\frac{3}{1280}=\frac{\sqrt{256009}}{1280} x+\frac{3}{1280}=-\frac{\sqrt{256009}}{1280}
Simplify.
x=\frac{\sqrt{256009}-3}{1280} x=\frac{-\sqrt{256009}-3}{1280}
Subtract \frac{3}{1280} from both sides of the equation.