Solve for x
x=\frac{3125\ln(59543)-3125\ln(20970)}{28}\approx 116.473872288
Solve for x (complex solution)
x=-\frac{i\times 3125\pi n_{1}}{14}+\frac{3125\ln(59543)}{28}-\frac{3125\ln(20970)}{28}
n_{1}\in \mathrm{Z}
Graph
Share
Copied to clipboard
\frac{2097}{5954.3}=e^{x\left(-0.00896\right)}
Divide both sides by 5954.3.
\frac{20970}{59543}=e^{x\left(-0.00896\right)}
Expand \frac{2097}{5954.3} by multiplying both numerator and the denominator by 10.
e^{x\left(-0.00896\right)}=\frac{20970}{59543}
Swap sides so that all variable terms are on the left hand side.
e^{-0.00896x}=\frac{20970}{59543}
Use the rules of exponents and logarithms to solve the equation.
\log(e^{-0.00896x})=\log(\frac{20970}{59543})
Take the logarithm of both sides of the equation.
-0.00896x\log(e)=\log(\frac{20970}{59543})
The logarithm of a number raised to a power is the power times the logarithm of the number.
-0.00896x=\frac{\log(\frac{20970}{59543})}{\log(e)}
Divide both sides by \log(e).
-0.00896x=\log_{e}\left(\frac{20970}{59543}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=\frac{\ln(\frac{20970}{59543})}{-0.00896}
Divide both sides of the equation by -0.00896, which is the same as multiplying both sides by the reciprocal of the fraction.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}