Evaluate
\frac{10400}{9}\approx 1155.555555556
Factor
\frac{2 ^ {5} \cdot 5 ^ {2} \cdot 13}{3 ^ {2}} = 1155\frac{5}{9} = 1155.5555555555557
Share
Copied to clipboard
\begin{array}{l}\phantom{18)}\phantom{1}\\18\overline{)20800}\\\end{array}
Use the 1^{st} digit 2 from dividend 20800
\begin{array}{l}\phantom{18)}0\phantom{2}\\18\overline{)20800}\\\end{array}
Since 2 is less than 18, use the next digit 0 from dividend 20800 and add 0 to the quotient
\begin{array}{l}\phantom{18)}0\phantom{3}\\18\overline{)20800}\\\end{array}
Use the 2^{nd} digit 0 from dividend 20800
\begin{array}{l}\phantom{18)}01\phantom{4}\\18\overline{)20800}\\\phantom{18)}\underline{\phantom{}18\phantom{999}}\\\phantom{18)9}2\\\end{array}
Find closest multiple of 18 to 20. We see that 1 \times 18 = 18 is the nearest. Now subtract 18 from 20 to get reminder 2. Add 1 to quotient.
\begin{array}{l}\phantom{18)}01\phantom{5}\\18\overline{)20800}\\\phantom{18)}\underline{\phantom{}18\phantom{999}}\\\phantom{18)9}28\\\end{array}
Use the 3^{rd} digit 8 from dividend 20800
\begin{array}{l}\phantom{18)}011\phantom{6}\\18\overline{)20800}\\\phantom{18)}\underline{\phantom{}18\phantom{999}}\\\phantom{18)9}28\\\phantom{18)}\underline{\phantom{9}18\phantom{99}}\\\phantom{18)9}10\\\end{array}
Find closest multiple of 18 to 28. We see that 1 \times 18 = 18 is the nearest. Now subtract 18 from 28 to get reminder 10. Add 1 to quotient.
\begin{array}{l}\phantom{18)}011\phantom{7}\\18\overline{)20800}\\\phantom{18)}\underline{\phantom{}18\phantom{999}}\\\phantom{18)9}28\\\phantom{18)}\underline{\phantom{9}18\phantom{99}}\\\phantom{18)9}100\\\end{array}
Use the 4^{th} digit 0 from dividend 20800
\begin{array}{l}\phantom{18)}0115\phantom{8}\\18\overline{)20800}\\\phantom{18)}\underline{\phantom{}18\phantom{999}}\\\phantom{18)9}28\\\phantom{18)}\underline{\phantom{9}18\phantom{99}}\\\phantom{18)9}100\\\phantom{18)}\underline{\phantom{99}90\phantom{9}}\\\phantom{18)99}10\\\end{array}
Find closest multiple of 18 to 100. We see that 5 \times 18 = 90 is the nearest. Now subtract 90 from 100 to get reminder 10. Add 5 to quotient.
\begin{array}{l}\phantom{18)}0115\phantom{9}\\18\overline{)20800}\\\phantom{18)}\underline{\phantom{}18\phantom{999}}\\\phantom{18)9}28\\\phantom{18)}\underline{\phantom{9}18\phantom{99}}\\\phantom{18)9}100\\\phantom{18)}\underline{\phantom{99}90\phantom{9}}\\\phantom{18)99}100\\\end{array}
Use the 5^{th} digit 0 from dividend 20800
\begin{array}{l}\phantom{18)}01155\phantom{10}\\18\overline{)20800}\\\phantom{18)}\underline{\phantom{}18\phantom{999}}\\\phantom{18)9}28\\\phantom{18)}\underline{\phantom{9}18\phantom{99}}\\\phantom{18)9}100\\\phantom{18)}\underline{\phantom{99}90\phantom{9}}\\\phantom{18)99}100\\\phantom{18)}\underline{\phantom{999}90\phantom{}}\\\phantom{18)999}10\\\end{array}
Find closest multiple of 18 to 100. We see that 5 \times 18 = 90 is the nearest. Now subtract 90 from 100 to get reminder 10. Add 5 to quotient.
\text{Quotient: }1155 \text{Reminder: }10
Since 10 is less than 18, stop the division. The reminder is 10. The topmost line 01155 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1155.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}