Evaluate
\frac{20736}{13}\approx 1595.076923077
Factor
\frac{2 ^ {8} \cdot 3 ^ {4}}{13} = 1595\frac{1}{13} = 1595.076923076923
Share
Copied to clipboard
\begin{array}{l}\phantom{13)}\phantom{1}\\13\overline{)20736}\\\end{array}
Use the 1^{st} digit 2 from dividend 20736
\begin{array}{l}\phantom{13)}0\phantom{2}\\13\overline{)20736}\\\end{array}
Since 2 is less than 13, use the next digit 0 from dividend 20736 and add 0 to the quotient
\begin{array}{l}\phantom{13)}0\phantom{3}\\13\overline{)20736}\\\end{array}
Use the 2^{nd} digit 0 from dividend 20736
\begin{array}{l}\phantom{13)}01\phantom{4}\\13\overline{)20736}\\\phantom{13)}\underline{\phantom{}13\phantom{999}}\\\phantom{13)9}7\\\end{array}
Find closest multiple of 13 to 20. We see that 1 \times 13 = 13 is the nearest. Now subtract 13 from 20 to get reminder 7. Add 1 to quotient.
\begin{array}{l}\phantom{13)}01\phantom{5}\\13\overline{)20736}\\\phantom{13)}\underline{\phantom{}13\phantom{999}}\\\phantom{13)9}77\\\end{array}
Use the 3^{rd} digit 7 from dividend 20736
\begin{array}{l}\phantom{13)}015\phantom{6}\\13\overline{)20736}\\\phantom{13)}\underline{\phantom{}13\phantom{999}}\\\phantom{13)9}77\\\phantom{13)}\underline{\phantom{9}65\phantom{99}}\\\phantom{13)9}12\\\end{array}
Find closest multiple of 13 to 77. We see that 5 \times 13 = 65 is the nearest. Now subtract 65 from 77 to get reminder 12. Add 5 to quotient.
\begin{array}{l}\phantom{13)}015\phantom{7}\\13\overline{)20736}\\\phantom{13)}\underline{\phantom{}13\phantom{999}}\\\phantom{13)9}77\\\phantom{13)}\underline{\phantom{9}65\phantom{99}}\\\phantom{13)9}123\\\end{array}
Use the 4^{th} digit 3 from dividend 20736
\begin{array}{l}\phantom{13)}0159\phantom{8}\\13\overline{)20736}\\\phantom{13)}\underline{\phantom{}13\phantom{999}}\\\phantom{13)9}77\\\phantom{13)}\underline{\phantom{9}65\phantom{99}}\\\phantom{13)9}123\\\phantom{13)}\underline{\phantom{9}117\phantom{9}}\\\phantom{13)999}6\\\end{array}
Find closest multiple of 13 to 123. We see that 9 \times 13 = 117 is the nearest. Now subtract 117 from 123 to get reminder 6. Add 9 to quotient.
\begin{array}{l}\phantom{13)}0159\phantom{9}\\13\overline{)20736}\\\phantom{13)}\underline{\phantom{}13\phantom{999}}\\\phantom{13)9}77\\\phantom{13)}\underline{\phantom{9}65\phantom{99}}\\\phantom{13)9}123\\\phantom{13)}\underline{\phantom{9}117\phantom{9}}\\\phantom{13)999}66\\\end{array}
Use the 5^{th} digit 6 from dividend 20736
\begin{array}{l}\phantom{13)}01595\phantom{10}\\13\overline{)20736}\\\phantom{13)}\underline{\phantom{}13\phantom{999}}\\\phantom{13)9}77\\\phantom{13)}\underline{\phantom{9}65\phantom{99}}\\\phantom{13)9}123\\\phantom{13)}\underline{\phantom{9}117\phantom{9}}\\\phantom{13)999}66\\\phantom{13)}\underline{\phantom{999}65\phantom{}}\\\phantom{13)9999}1\\\end{array}
Find closest multiple of 13 to 66. We see that 5 \times 13 = 65 is the nearest. Now subtract 65 from 66 to get reminder 1. Add 5 to quotient.
\text{Quotient: }1595 \text{Reminder: }1
Since 1 is less than 13, stop the division. The reminder is 1. The topmost line 01595 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1595.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}