Evaluate
17
Factor
17
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)204}\\\end{array}
Use the 1^{st} digit 2 from dividend 204
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)204}\\\end{array}
Since 2 is less than 12, use the next digit 0 from dividend 204 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)204}\\\end{array}
Use the 2^{nd} digit 0 from dividend 204
\begin{array}{l}\phantom{12)}01\phantom{4}\\12\overline{)204}\\\phantom{12)}\underline{\phantom{}12\phantom{9}}\\\phantom{12)9}8\\\end{array}
Find closest multiple of 12 to 20. We see that 1 \times 12 = 12 is the nearest. Now subtract 12 from 20 to get reminder 8. Add 1 to quotient.
\begin{array}{l}\phantom{12)}01\phantom{5}\\12\overline{)204}\\\phantom{12)}\underline{\phantom{}12\phantom{9}}\\\phantom{12)9}84\\\end{array}
Use the 3^{rd} digit 4 from dividend 204
\begin{array}{l}\phantom{12)}017\phantom{6}\\12\overline{)204}\\\phantom{12)}\underline{\phantom{}12\phantom{9}}\\\phantom{12)9}84\\\phantom{12)}\underline{\phantom{9}84\phantom{}}\\\phantom{12)999}0\\\end{array}
Find closest multiple of 12 to 84. We see that 7 \times 12 = 84 is the nearest. Now subtract 84 from 84 to get reminder 0. Add 7 to quotient.
\text{Quotient: }17 \text{Reminder: }0
Since 0 is less than 12, stop the division. The reminder is 0. The topmost line 017 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}