Evaluate
\frac{20341}{187}\approx 108.77540107
Factor
\frac{20341}{11 \cdot 17} = 108\frac{145}{187} = 108.77540106951872
Share
Copied to clipboard
\begin{array}{l}\phantom{187)}\phantom{1}\\187\overline{)20341}\\\end{array}
Use the 1^{st} digit 2 from dividend 20341
\begin{array}{l}\phantom{187)}0\phantom{2}\\187\overline{)20341}\\\end{array}
Since 2 is less than 187, use the next digit 0 from dividend 20341 and add 0 to the quotient
\begin{array}{l}\phantom{187)}0\phantom{3}\\187\overline{)20341}\\\end{array}
Use the 2^{nd} digit 0 from dividend 20341
\begin{array}{l}\phantom{187)}00\phantom{4}\\187\overline{)20341}\\\end{array}
Since 20 is less than 187, use the next digit 3 from dividend 20341 and add 0 to the quotient
\begin{array}{l}\phantom{187)}00\phantom{5}\\187\overline{)20341}\\\end{array}
Use the 3^{rd} digit 3 from dividend 20341
\begin{array}{l}\phantom{187)}001\phantom{6}\\187\overline{)20341}\\\phantom{187)}\underline{\phantom{}187\phantom{99}}\\\phantom{187)9}16\\\end{array}
Find closest multiple of 187 to 203. We see that 1 \times 187 = 187 is the nearest. Now subtract 187 from 203 to get reminder 16. Add 1 to quotient.
\begin{array}{l}\phantom{187)}001\phantom{7}\\187\overline{)20341}\\\phantom{187)}\underline{\phantom{}187\phantom{99}}\\\phantom{187)9}164\\\end{array}
Use the 4^{th} digit 4 from dividend 20341
\begin{array}{l}\phantom{187)}0010\phantom{8}\\187\overline{)20341}\\\phantom{187)}\underline{\phantom{}187\phantom{99}}\\\phantom{187)9}164\\\end{array}
Since 164 is less than 187, use the next digit 1 from dividend 20341 and add 0 to the quotient
\begin{array}{l}\phantom{187)}0010\phantom{9}\\187\overline{)20341}\\\phantom{187)}\underline{\phantom{}187\phantom{99}}\\\phantom{187)9}1641\\\end{array}
Use the 5^{th} digit 1 from dividend 20341
\begin{array}{l}\phantom{187)}00108\phantom{10}\\187\overline{)20341}\\\phantom{187)}\underline{\phantom{}187\phantom{99}}\\\phantom{187)9}1641\\\phantom{187)}\underline{\phantom{9}1496\phantom{}}\\\phantom{187)99}145\\\end{array}
Find closest multiple of 187 to 1641. We see that 8 \times 187 = 1496 is the nearest. Now subtract 1496 from 1641 to get reminder 145. Add 8 to quotient.
\text{Quotient: }108 \text{Reminder: }145
Since 145 is less than 187, stop the division. The reminder is 145. The topmost line 00108 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 108.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}