Evaluate
\frac{203}{129}\approx 1.573643411
Factor
\frac{7 \cdot 29}{3 \cdot 43} = 1\frac{74}{129} = 1.573643410852713
Share
Copied to clipboard
\begin{array}{l}\phantom{129)}\phantom{1}\\129\overline{)203}\\\end{array}
Use the 1^{st} digit 2 from dividend 203
\begin{array}{l}\phantom{129)}0\phantom{2}\\129\overline{)203}\\\end{array}
Since 2 is less than 129, use the next digit 0 from dividend 203 and add 0 to the quotient
\begin{array}{l}\phantom{129)}0\phantom{3}\\129\overline{)203}\\\end{array}
Use the 2^{nd} digit 0 from dividend 203
\begin{array}{l}\phantom{129)}00\phantom{4}\\129\overline{)203}\\\end{array}
Since 20 is less than 129, use the next digit 3 from dividend 203 and add 0 to the quotient
\begin{array}{l}\phantom{129)}00\phantom{5}\\129\overline{)203}\\\end{array}
Use the 3^{rd} digit 3 from dividend 203
\begin{array}{l}\phantom{129)}001\phantom{6}\\129\overline{)203}\\\phantom{129)}\underline{\phantom{}129\phantom{}}\\\phantom{129)9}74\\\end{array}
Find closest multiple of 129 to 203. We see that 1 \times 129 = 129 is the nearest. Now subtract 129 from 203 to get reminder 74. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }74
Since 74 is less than 129, stop the division. The reminder is 74. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}