Evaluate
\frac{101}{20}=5.05
Factor
\frac{101}{2 ^ {2} \cdot 5} = 5\frac{1}{20} = 5.05
Share
Copied to clipboard
\begin{array}{l}\phantom{400)}\phantom{1}\\400\overline{)2020}\\\end{array}
Use the 1^{st} digit 2 from dividend 2020
\begin{array}{l}\phantom{400)}0\phantom{2}\\400\overline{)2020}\\\end{array}
Since 2 is less than 400, use the next digit 0 from dividend 2020 and add 0 to the quotient
\begin{array}{l}\phantom{400)}0\phantom{3}\\400\overline{)2020}\\\end{array}
Use the 2^{nd} digit 0 from dividend 2020
\begin{array}{l}\phantom{400)}00\phantom{4}\\400\overline{)2020}\\\end{array}
Since 20 is less than 400, use the next digit 2 from dividend 2020 and add 0 to the quotient
\begin{array}{l}\phantom{400)}00\phantom{5}\\400\overline{)2020}\\\end{array}
Use the 3^{rd} digit 2 from dividend 2020
\begin{array}{l}\phantom{400)}000\phantom{6}\\400\overline{)2020}\\\end{array}
Since 202 is less than 400, use the next digit 0 from dividend 2020 and add 0 to the quotient
\begin{array}{l}\phantom{400)}000\phantom{7}\\400\overline{)2020}\\\end{array}
Use the 4^{th} digit 0 from dividend 2020
\begin{array}{l}\phantom{400)}0005\phantom{8}\\400\overline{)2020}\\\phantom{400)}\underline{\phantom{}2000\phantom{}}\\\phantom{400)99}20\\\end{array}
Find closest multiple of 400 to 2020. We see that 5 \times 400 = 2000 is the nearest. Now subtract 2000 from 2020 to get reminder 20. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }20
Since 20 is less than 400, stop the division. The reminder is 20. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}