Evaluate
\frac{404}{73}\approx 5.534246575
Factor
\frac{2 ^ {2} \cdot 101}{73} = 5\frac{39}{73} = 5.534246575342466
Share
Copied to clipboard
\begin{array}{l}\phantom{365)}\phantom{1}\\365\overline{)2020}\\\end{array}
Use the 1^{st} digit 2 from dividend 2020
\begin{array}{l}\phantom{365)}0\phantom{2}\\365\overline{)2020}\\\end{array}
Since 2 is less than 365, use the next digit 0 from dividend 2020 and add 0 to the quotient
\begin{array}{l}\phantom{365)}0\phantom{3}\\365\overline{)2020}\\\end{array}
Use the 2^{nd} digit 0 from dividend 2020
\begin{array}{l}\phantom{365)}00\phantom{4}\\365\overline{)2020}\\\end{array}
Since 20 is less than 365, use the next digit 2 from dividend 2020 and add 0 to the quotient
\begin{array}{l}\phantom{365)}00\phantom{5}\\365\overline{)2020}\\\end{array}
Use the 3^{rd} digit 2 from dividend 2020
\begin{array}{l}\phantom{365)}000\phantom{6}\\365\overline{)2020}\\\end{array}
Since 202 is less than 365, use the next digit 0 from dividend 2020 and add 0 to the quotient
\begin{array}{l}\phantom{365)}000\phantom{7}\\365\overline{)2020}\\\end{array}
Use the 4^{th} digit 0 from dividend 2020
\begin{array}{l}\phantom{365)}0005\phantom{8}\\365\overline{)2020}\\\phantom{365)}\underline{\phantom{}1825\phantom{}}\\\phantom{365)9}195\\\end{array}
Find closest multiple of 365 to 2020. We see that 5 \times 365 = 1825 is the nearest. Now subtract 1825 from 2020 to get reminder 195. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }195
Since 195 is less than 365, stop the division. The reminder is 195. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}