Evaluate
\frac{183}{65}\approx 2.815384615
Factor
\frac{3 \cdot 61}{5 \cdot 13} = 2\frac{53}{65} = 2.8153846153846156
Share
Copied to clipboard
\begin{array}{l}\phantom{715)}\phantom{1}\\715\overline{)2013}\\\end{array}
Use the 1^{st} digit 2 from dividend 2013
\begin{array}{l}\phantom{715)}0\phantom{2}\\715\overline{)2013}\\\end{array}
Since 2 is less than 715, use the next digit 0 from dividend 2013 and add 0 to the quotient
\begin{array}{l}\phantom{715)}0\phantom{3}\\715\overline{)2013}\\\end{array}
Use the 2^{nd} digit 0 from dividend 2013
\begin{array}{l}\phantom{715)}00\phantom{4}\\715\overline{)2013}\\\end{array}
Since 20 is less than 715, use the next digit 1 from dividend 2013 and add 0 to the quotient
\begin{array}{l}\phantom{715)}00\phantom{5}\\715\overline{)2013}\\\end{array}
Use the 3^{rd} digit 1 from dividend 2013
\begin{array}{l}\phantom{715)}000\phantom{6}\\715\overline{)2013}\\\end{array}
Since 201 is less than 715, use the next digit 3 from dividend 2013 and add 0 to the quotient
\begin{array}{l}\phantom{715)}000\phantom{7}\\715\overline{)2013}\\\end{array}
Use the 4^{th} digit 3 from dividend 2013
\begin{array}{l}\phantom{715)}0002\phantom{8}\\715\overline{)2013}\\\phantom{715)}\underline{\phantom{}1430\phantom{}}\\\phantom{715)9}583\\\end{array}
Find closest multiple of 715 to 2013. We see that 2 \times 715 = 1430 is the nearest. Now subtract 1430 from 2013 to get reminder 583. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }583
Since 583 is less than 715, stop the division. The reminder is 583. The topmost line 0002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}