Evaluate
\frac{201}{65}\approx 3.092307692
Factor
\frac{3 \cdot 67}{5 \cdot 13} = 3\frac{6}{65} = 3.0923076923076924
Share
Copied to clipboard
\begin{array}{l}\phantom{65)}\phantom{1}\\65\overline{)201}\\\end{array}
Use the 1^{st} digit 2 from dividend 201
\begin{array}{l}\phantom{65)}0\phantom{2}\\65\overline{)201}\\\end{array}
Since 2 is less than 65, use the next digit 0 from dividend 201 and add 0 to the quotient
\begin{array}{l}\phantom{65)}0\phantom{3}\\65\overline{)201}\\\end{array}
Use the 2^{nd} digit 0 from dividend 201
\begin{array}{l}\phantom{65)}00\phantom{4}\\65\overline{)201}\\\end{array}
Since 20 is less than 65, use the next digit 1 from dividend 201 and add 0 to the quotient
\begin{array}{l}\phantom{65)}00\phantom{5}\\65\overline{)201}\\\end{array}
Use the 3^{rd} digit 1 from dividend 201
\begin{array}{l}\phantom{65)}003\phantom{6}\\65\overline{)201}\\\phantom{65)}\underline{\phantom{}195\phantom{}}\\\phantom{65)99}6\\\end{array}
Find closest multiple of 65 to 201. We see that 3 \times 65 = 195 is the nearest. Now subtract 195 from 201 to get reminder 6. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }6
Since 6 is less than 65, stop the division. The reminder is 6. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}