Evaluate
\frac{12500}{3}\approx 4166.666666667
Factor
\frac{2 ^ {2} \cdot 5 ^ {5}}{3} = 4166\frac{2}{3} = 4166.666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{48)}\phantom{1}\\48\overline{)200000}\\\end{array}
Use the 1^{st} digit 2 from dividend 200000
\begin{array}{l}\phantom{48)}0\phantom{2}\\48\overline{)200000}\\\end{array}
Since 2 is less than 48, use the next digit 0 from dividend 200000 and add 0 to the quotient
\begin{array}{l}\phantom{48)}0\phantom{3}\\48\overline{)200000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 200000
\begin{array}{l}\phantom{48)}00\phantom{4}\\48\overline{)200000}\\\end{array}
Since 20 is less than 48, use the next digit 0 from dividend 200000 and add 0 to the quotient
\begin{array}{l}\phantom{48)}00\phantom{5}\\48\overline{)200000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 200000
\begin{array}{l}\phantom{48)}004\phantom{6}\\48\overline{)200000}\\\phantom{48)}\underline{\phantom{}192\phantom{999}}\\\phantom{48)99}8\\\end{array}
Find closest multiple of 48 to 200. We see that 4 \times 48 = 192 is the nearest. Now subtract 192 from 200 to get reminder 8. Add 4 to quotient.
\begin{array}{l}\phantom{48)}004\phantom{7}\\48\overline{)200000}\\\phantom{48)}\underline{\phantom{}192\phantom{999}}\\\phantom{48)99}80\\\end{array}
Use the 4^{th} digit 0 from dividend 200000
\begin{array}{l}\phantom{48)}0041\phantom{8}\\48\overline{)200000}\\\phantom{48)}\underline{\phantom{}192\phantom{999}}\\\phantom{48)99}80\\\phantom{48)}\underline{\phantom{99}48\phantom{99}}\\\phantom{48)99}32\\\end{array}
Find closest multiple of 48 to 80. We see that 1 \times 48 = 48 is the nearest. Now subtract 48 from 80 to get reminder 32. Add 1 to quotient.
\begin{array}{l}\phantom{48)}0041\phantom{9}\\48\overline{)200000}\\\phantom{48)}\underline{\phantom{}192\phantom{999}}\\\phantom{48)99}80\\\phantom{48)}\underline{\phantom{99}48\phantom{99}}\\\phantom{48)99}320\\\end{array}
Use the 5^{th} digit 0 from dividend 200000
\begin{array}{l}\phantom{48)}00416\phantom{10}\\48\overline{)200000}\\\phantom{48)}\underline{\phantom{}192\phantom{999}}\\\phantom{48)99}80\\\phantom{48)}\underline{\phantom{99}48\phantom{99}}\\\phantom{48)99}320\\\phantom{48)}\underline{\phantom{99}288\phantom{9}}\\\phantom{48)999}32\\\end{array}
Find closest multiple of 48 to 320. We see that 6 \times 48 = 288 is the nearest. Now subtract 288 from 320 to get reminder 32. Add 6 to quotient.
\begin{array}{l}\phantom{48)}00416\phantom{11}\\48\overline{)200000}\\\phantom{48)}\underline{\phantom{}192\phantom{999}}\\\phantom{48)99}80\\\phantom{48)}\underline{\phantom{99}48\phantom{99}}\\\phantom{48)99}320\\\phantom{48)}\underline{\phantom{99}288\phantom{9}}\\\phantom{48)999}320\\\end{array}
Use the 6^{th} digit 0 from dividend 200000
\begin{array}{l}\phantom{48)}004166\phantom{12}\\48\overline{)200000}\\\phantom{48)}\underline{\phantom{}192\phantom{999}}\\\phantom{48)99}80\\\phantom{48)}\underline{\phantom{99}48\phantom{99}}\\\phantom{48)99}320\\\phantom{48)}\underline{\phantom{99}288\phantom{9}}\\\phantom{48)999}320\\\phantom{48)}\underline{\phantom{999}288\phantom{}}\\\phantom{48)9999}32\\\end{array}
Find closest multiple of 48 to 320. We see that 6 \times 48 = 288 is the nearest. Now subtract 288 from 320 to get reminder 32. Add 6 to quotient.
\text{Quotient: }4166 \text{Reminder: }32
Since 32 is less than 48, stop the division. The reminder is 32. The topmost line 004166 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4166.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}