Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

260\left(1-x\right)\left(6.5-7.5x\right)\times 3=936
Multiply 2000 and \frac{13}{100} to get 260.
780\left(1-x\right)\left(6.5-7.5x\right)=936
Multiply 260 and 3 to get 780.
\left(780-780x\right)\left(6.5-7.5x\right)=936
Use the distributive property to multiply 780 by 1-x.
5070-10920x+5850x^{2}=936
Use the distributive property to multiply 780-780x by 6.5-7.5x and combine like terms.
5070-10920x+5850x^{2}-936=0
Subtract 936 from both sides.
4134-10920x+5850x^{2}=0
Subtract 936 from 5070 to get 4134.
5850x^{2}-10920x+4134=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-10920\right)±\sqrt{\left(-10920\right)^{2}-4\times 5850\times 4134}}{2\times 5850}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5850 for a, -10920 for b, and 4134 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10920\right)±\sqrt{119246400-4\times 5850\times 4134}}{2\times 5850}
Square -10920.
x=\frac{-\left(-10920\right)±\sqrt{119246400-23400\times 4134}}{2\times 5850}
Multiply -4 times 5850.
x=\frac{-\left(-10920\right)±\sqrt{119246400-96735600}}{2\times 5850}
Multiply -23400 times 4134.
x=\frac{-\left(-10920\right)±\sqrt{22510800}}{2\times 5850}
Add 119246400 to -96735600.
x=\frac{-\left(-10920\right)±780\sqrt{37}}{2\times 5850}
Take the square root of 22510800.
x=\frac{10920±780\sqrt{37}}{2\times 5850}
The opposite of -10920 is 10920.
x=\frac{10920±780\sqrt{37}}{11700}
Multiply 2 times 5850.
x=\frac{780\sqrt{37}+10920}{11700}
Now solve the equation x=\frac{10920±780\sqrt{37}}{11700} when ± is plus. Add 10920 to 780\sqrt{37}.
x=\frac{\sqrt{37}+14}{15}
Divide 10920+780\sqrt{37} by 11700.
x=\frac{10920-780\sqrt{37}}{11700}
Now solve the equation x=\frac{10920±780\sqrt{37}}{11700} when ± is minus. Subtract 780\sqrt{37} from 10920.
x=\frac{14-\sqrt{37}}{15}
Divide 10920-780\sqrt{37} by 11700.
x=\frac{\sqrt{37}+14}{15} x=\frac{14-\sqrt{37}}{15}
The equation is now solved.
260\left(1-x\right)\left(6.5-7.5x\right)\times 3=936
Multiply 2000 and \frac{13}{100} to get 260.
780\left(1-x\right)\left(6.5-7.5x\right)=936
Multiply 260 and 3 to get 780.
\left(780-780x\right)\left(6.5-7.5x\right)=936
Use the distributive property to multiply 780 by 1-x.
5070-10920x+5850x^{2}=936
Use the distributive property to multiply 780-780x by 6.5-7.5x and combine like terms.
-10920x+5850x^{2}=936-5070
Subtract 5070 from both sides.
-10920x+5850x^{2}=-4134
Subtract 5070 from 936 to get -4134.
5850x^{2}-10920x=-4134
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5850x^{2}-10920x}{5850}=-\frac{4134}{5850}
Divide both sides by 5850.
x^{2}+\left(-\frac{10920}{5850}\right)x=-\frac{4134}{5850}
Dividing by 5850 undoes the multiplication by 5850.
x^{2}-\frac{28}{15}x=-\frac{4134}{5850}
Reduce the fraction \frac{-10920}{5850} to lowest terms by extracting and canceling out 390.
x^{2}-\frac{28}{15}x=-\frac{53}{75}
Reduce the fraction \frac{-4134}{5850} to lowest terms by extracting and canceling out 78.
x^{2}-\frac{28}{15}x+\left(-\frac{14}{15}\right)^{2}=-\frac{53}{75}+\left(-\frac{14}{15}\right)^{2}
Divide -\frac{28}{15}, the coefficient of the x term, by 2 to get -\frac{14}{15}. Then add the square of -\frac{14}{15} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{28}{15}x+\frac{196}{225}=-\frac{53}{75}+\frac{196}{225}
Square -\frac{14}{15} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{28}{15}x+\frac{196}{225}=\frac{37}{225}
Add -\frac{53}{75} to \frac{196}{225} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{14}{15}\right)^{2}=\frac{37}{225}
Factor x^{2}-\frac{28}{15}x+\frac{196}{225}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{14}{15}\right)^{2}}=\sqrt{\frac{37}{225}}
Take the square root of both sides of the equation.
x-\frac{14}{15}=\frac{\sqrt{37}}{15} x-\frac{14}{15}=-\frac{\sqrt{37}}{15}
Simplify.
x=\frac{\sqrt{37}+14}{15} x=\frac{14-\sqrt{37}}{15}
Add \frac{14}{15} to both sides of the equation.