Solve for x
x=5
x=40
Graph
Share
Copied to clipboard
2000-180x+4x^{2}=1200
Combine -80x and -100x to get -180x.
2000-180x+4x^{2}-1200=0
Subtract 1200 from both sides.
800-180x+4x^{2}=0
Subtract 1200 from 2000 to get 800.
4x^{2}-180x+800=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-180\right)±\sqrt{\left(-180\right)^{2}-4\times 4\times 800}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -180 for b, and 800 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-180\right)±\sqrt{32400-4\times 4\times 800}}{2\times 4}
Square -180.
x=\frac{-\left(-180\right)±\sqrt{32400-16\times 800}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-180\right)±\sqrt{32400-12800}}{2\times 4}
Multiply -16 times 800.
x=\frac{-\left(-180\right)±\sqrt{19600}}{2\times 4}
Add 32400 to -12800.
x=\frac{-\left(-180\right)±140}{2\times 4}
Take the square root of 19600.
x=\frac{180±140}{2\times 4}
The opposite of -180 is 180.
x=\frac{180±140}{8}
Multiply 2 times 4.
x=\frac{320}{8}
Now solve the equation x=\frac{180±140}{8} when ± is plus. Add 180 to 140.
x=40
Divide 320 by 8.
x=\frac{40}{8}
Now solve the equation x=\frac{180±140}{8} when ± is minus. Subtract 140 from 180.
x=5
Divide 40 by 8.
x=40 x=5
The equation is now solved.
2000-180x+4x^{2}=1200
Combine -80x and -100x to get -180x.
-180x+4x^{2}=1200-2000
Subtract 2000 from both sides.
-180x+4x^{2}=-800
Subtract 2000 from 1200 to get -800.
4x^{2}-180x=-800
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}-180x}{4}=-\frac{800}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{180}{4}\right)x=-\frac{800}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-45x=-\frac{800}{4}
Divide -180 by 4.
x^{2}-45x=-200
Divide -800 by 4.
x^{2}-45x+\left(-\frac{45}{2}\right)^{2}=-200+\left(-\frac{45}{2}\right)^{2}
Divide -45, the coefficient of the x term, by 2 to get -\frac{45}{2}. Then add the square of -\frac{45}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-45x+\frac{2025}{4}=-200+\frac{2025}{4}
Square -\frac{45}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-45x+\frac{2025}{4}=\frac{1225}{4}
Add -200 to \frac{2025}{4}.
\left(x-\frac{45}{2}\right)^{2}=\frac{1225}{4}
Factor x^{2}-45x+\frac{2025}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{45}{2}\right)^{2}}=\sqrt{\frac{1225}{4}}
Take the square root of both sides of the equation.
x-\frac{45}{2}=\frac{35}{2} x-\frac{45}{2}=-\frac{35}{2}
Simplify.
x=40 x=5
Add \frac{45}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}