Evaluate
\frac{40}{17}\approx 2.352941176
Factor
\frac{2 ^ {3} \cdot 5}{17} = 2\frac{6}{17} = 2.3529411764705883
Share
Copied to clipboard
\begin{array}{l}\phantom{850)}\phantom{1}\\850\overline{)2000}\\\end{array}
Use the 1^{st} digit 2 from dividend 2000
\begin{array}{l}\phantom{850)}0\phantom{2}\\850\overline{)2000}\\\end{array}
Since 2 is less than 850, use the next digit 0 from dividend 2000 and add 0 to the quotient
\begin{array}{l}\phantom{850)}0\phantom{3}\\850\overline{)2000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 2000
\begin{array}{l}\phantom{850)}00\phantom{4}\\850\overline{)2000}\\\end{array}
Since 20 is less than 850, use the next digit 0 from dividend 2000 and add 0 to the quotient
\begin{array}{l}\phantom{850)}00\phantom{5}\\850\overline{)2000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 2000
\begin{array}{l}\phantom{850)}000\phantom{6}\\850\overline{)2000}\\\end{array}
Since 200 is less than 850, use the next digit 0 from dividend 2000 and add 0 to the quotient
\begin{array}{l}\phantom{850)}000\phantom{7}\\850\overline{)2000}\\\end{array}
Use the 4^{th} digit 0 from dividend 2000
\begin{array}{l}\phantom{850)}0002\phantom{8}\\850\overline{)2000}\\\phantom{850)}\underline{\phantom{}1700\phantom{}}\\\phantom{850)9}300\\\end{array}
Find closest multiple of 850 to 2000. We see that 2 \times 850 = 1700 is the nearest. Now subtract 1700 from 2000 to get reminder 300. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }300
Since 300 is less than 850, stop the division. The reminder is 300. The topmost line 0002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}