Evaluate
\frac{400}{73}\approx 5.479452055
Factor
\frac{2 ^ {4} \cdot 5 ^ {2}}{73} = 5\frac{35}{73} = 5.47945205479452
Share
Copied to clipboard
\begin{array}{l}\phantom{365)}\phantom{1}\\365\overline{)2000}\\\end{array}
Use the 1^{st} digit 2 from dividend 2000
\begin{array}{l}\phantom{365)}0\phantom{2}\\365\overline{)2000}\\\end{array}
Since 2 is less than 365, use the next digit 0 from dividend 2000 and add 0 to the quotient
\begin{array}{l}\phantom{365)}0\phantom{3}\\365\overline{)2000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 2000
\begin{array}{l}\phantom{365)}00\phantom{4}\\365\overline{)2000}\\\end{array}
Since 20 is less than 365, use the next digit 0 from dividend 2000 and add 0 to the quotient
\begin{array}{l}\phantom{365)}00\phantom{5}\\365\overline{)2000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 2000
\begin{array}{l}\phantom{365)}000\phantom{6}\\365\overline{)2000}\\\end{array}
Since 200 is less than 365, use the next digit 0 from dividend 2000 and add 0 to the quotient
\begin{array}{l}\phantom{365)}000\phantom{7}\\365\overline{)2000}\\\end{array}
Use the 4^{th} digit 0 from dividend 2000
\begin{array}{l}\phantom{365)}0005\phantom{8}\\365\overline{)2000}\\\phantom{365)}\underline{\phantom{}1825\phantom{}}\\\phantom{365)9}175\\\end{array}
Find closest multiple of 365 to 2000. We see that 5 \times 365 = 1825 is the nearest. Now subtract 1825 from 2000 to get reminder 175. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }175
Since 175 is less than 365, stop the division. The reminder is 175. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}