Solve for a
a=-\frac{25\left(3t-80\right)}{t^{2}}
t\neq 0
Solve for t (complex solution)
\left\{\begin{matrix}t=-\frac{5\left(\sqrt{5\left(64a+45\right)}+15\right)}{2a}\text{; }t=-\frac{5\left(-\sqrt{5\left(64a+45\right)}+15\right)}{2a}\text{, }&a\neq 0\\t=\frac{80}{3}\text{, }&a=0\end{matrix}\right.
Solve for t
\left\{\begin{matrix}t=-\frac{5\left(\sqrt{5\left(64a+45\right)}+15\right)}{2a}\text{; }t=-\frac{5\left(-\sqrt{5\left(64a+45\right)}+15\right)}{2a}\text{, }&a\neq 0\text{ and }a\geq -\frac{45}{64}\\t=\frac{80}{3}\text{, }&a=0\end{matrix}\right.
Share
Copied to clipboard
75t+at^{2}=2000
Swap sides so that all variable terms are on the left hand side.
at^{2}=2000-75t
Subtract 75t from both sides.
t^{2}a=2000-75t
The equation is in standard form.
\frac{t^{2}a}{t^{2}}=\frac{2000-75t}{t^{2}}
Divide both sides by t^{2}.
a=\frac{2000-75t}{t^{2}}
Dividing by t^{2} undoes the multiplication by t^{2}.
a=\frac{25\left(80-3t\right)}{t^{2}}
Divide 2000-75t by t^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}