Solve for Q
Q=\sqrt{6}+\frac{5}{2}\approx 4.949489743
Q=\frac{5}{2}-\sqrt{6}\approx 0.050510257
Share
Copied to clipboard
-40Q^{2}+200Q=10
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-40Q^{2}+200Q-10=10-10
Subtract 10 from both sides of the equation.
-40Q^{2}+200Q-10=0
Subtracting 10 from itself leaves 0.
Q=\frac{-200±\sqrt{200^{2}-4\left(-40\right)\left(-10\right)}}{2\left(-40\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -40 for a, 200 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
Q=\frac{-200±\sqrt{40000-4\left(-40\right)\left(-10\right)}}{2\left(-40\right)}
Square 200.
Q=\frac{-200±\sqrt{40000+160\left(-10\right)}}{2\left(-40\right)}
Multiply -4 times -40.
Q=\frac{-200±\sqrt{40000-1600}}{2\left(-40\right)}
Multiply 160 times -10.
Q=\frac{-200±\sqrt{38400}}{2\left(-40\right)}
Add 40000 to -1600.
Q=\frac{-200±80\sqrt{6}}{2\left(-40\right)}
Take the square root of 38400.
Q=\frac{-200±80\sqrt{6}}{-80}
Multiply 2 times -40.
Q=\frac{80\sqrt{6}-200}{-80}
Now solve the equation Q=\frac{-200±80\sqrt{6}}{-80} when ± is plus. Add -200 to 80\sqrt{6}.
Q=\frac{5}{2}-\sqrt{6}
Divide -200+80\sqrt{6} by -80.
Q=\frac{-80\sqrt{6}-200}{-80}
Now solve the equation Q=\frac{-200±80\sqrt{6}}{-80} when ± is minus. Subtract 80\sqrt{6} from -200.
Q=\sqrt{6}+\frac{5}{2}
Divide -200-80\sqrt{6} by -80.
Q=\frac{5}{2}-\sqrt{6} Q=\sqrt{6}+\frac{5}{2}
The equation is now solved.
-40Q^{2}+200Q=10
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-40Q^{2}+200Q}{-40}=\frac{10}{-40}
Divide both sides by -40.
Q^{2}+\frac{200}{-40}Q=\frac{10}{-40}
Dividing by -40 undoes the multiplication by -40.
Q^{2}-5Q=\frac{10}{-40}
Divide 200 by -40.
Q^{2}-5Q=-\frac{1}{4}
Reduce the fraction \frac{10}{-40} to lowest terms by extracting and canceling out 10.
Q^{2}-5Q+\left(-\frac{5}{2}\right)^{2}=-\frac{1}{4}+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
Q^{2}-5Q+\frac{25}{4}=\frac{-1+25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
Q^{2}-5Q+\frac{25}{4}=6
Add -\frac{1}{4} to \frac{25}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(Q-\frac{5}{2}\right)^{2}=6
Factor Q^{2}-5Q+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(Q-\frac{5}{2}\right)^{2}}=\sqrt{6}
Take the square root of both sides of the equation.
Q-\frac{5}{2}=\sqrt{6} Q-\frac{5}{2}=-\sqrt{6}
Simplify.
Q=\sqrt{6}+\frac{5}{2} Q=\frac{5}{2}-\sqrt{6}
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}