Solve for x
x=\frac{200}{3y+200}
y\neq -\frac{200}{3}
Solve for y
y=-\frac{200}{3}+\frac{200}{3x}
x\neq 0
Graph
Share
Copied to clipboard
200-x\times 4y=200x-xy
Use the distributive property to multiply x by 200-y.
200-x\times 4y-200x=-xy
Subtract 200x from both sides.
200-x\times 4y-200x+xy=0
Add xy to both sides.
200-4xy-200x+xy=0
Multiply -1 and 4 to get -4.
200-3xy-200x=0
Combine -4xy and xy to get -3xy.
-3xy-200x=-200
Subtract 200 from both sides. Anything subtracted from zero gives its negation.
\left(-3y-200\right)x=-200
Combine all terms containing x.
\frac{\left(-3y-200\right)x}{-3y-200}=-\frac{200}{-3y-200}
Divide both sides by -3y-200.
x=-\frac{200}{-3y-200}
Dividing by -3y-200 undoes the multiplication by -3y-200.
x=\frac{200}{3y+200}
Divide -200 by -3y-200.
200-x\times 4y=200x-xy
Use the distributive property to multiply x by 200-y.
200-x\times 4y+xy=200x
Add xy to both sides.
200-4xy+xy=200x
Multiply -1 and 4 to get -4.
200-3xy=200x
Combine -4xy and xy to get -3xy.
-3xy=200x-200
Subtract 200 from both sides.
\left(-3x\right)y=200x-200
The equation is in standard form.
\frac{\left(-3x\right)y}{-3x}=\frac{200x-200}{-3x}
Divide both sides by -3x.
y=\frac{200x-200}{-3x}
Dividing by -3x undoes the multiplication by -3x.
y=-\frac{200}{3}+\frac{200}{3x}
Divide -200+200x by -3x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}