200 ( 1 + x \% ) ^ { 2 } = 224.72
Solve for x
x=6
x=-206
Graph
Share
Copied to clipboard
\frac{200\left(\frac{1}{100}x+1\right)^{2}}{200}=\frac{224.72}{200}
Divide both sides by 200.
\left(\frac{1}{100}x+1\right)^{2}=\frac{224.72}{200}
Dividing by 200 undoes the multiplication by 200.
\left(\frac{1}{100}x+1\right)^{2}=1.1236
Divide 224.72 by 200.
\frac{1}{100}x+1=\frac{53}{50} \frac{1}{100}x+1=-\frac{53}{50}
Take the square root of both sides of the equation.
\frac{1}{100}x+1-1=\frac{53}{50}-1 \frac{1}{100}x+1-1=-\frac{53}{50}-1
Subtract 1 from both sides of the equation.
\frac{1}{100}x=\frac{53}{50}-1 \frac{1}{100}x=-\frac{53}{50}-1
Subtracting 1 from itself leaves 0.
\frac{1}{100}x=\frac{3}{50}
Subtract 1 from \frac{53}{50}.
\frac{1}{100}x=-\frac{103}{50}
Subtract 1 from -\frac{53}{50}.
\frac{\frac{1}{100}x}{\frac{1}{100}}=\frac{\frac{3}{50}}{\frac{1}{100}} \frac{\frac{1}{100}x}{\frac{1}{100}}=-\frac{\frac{103}{50}}{\frac{1}{100}}
Multiply both sides by 100.
x=\frac{\frac{3}{50}}{\frac{1}{100}} x=-\frac{\frac{103}{50}}{\frac{1}{100}}
Dividing by \frac{1}{100} undoes the multiplication by \frac{1}{100}.
x=6
Divide \frac{3}{50} by \frac{1}{100} by multiplying \frac{3}{50} by the reciprocal of \frac{1}{100}.
x=-206
Divide -\frac{103}{50} by \frac{1}{100} by multiplying -\frac{103}{50} by the reciprocal of \frac{1}{100}.
x=6 x=-206
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}