Solve for x (complex solution)
x=\frac{9+\sqrt{95919}i}{400}\approx 0.0225+0.774269817i
x=\frac{-\sqrt{95919}i+9}{400}\approx 0.0225-0.774269817i
Graph
Share
Copied to clipboard
200x^{2}-9x+120=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 200\times 120}}{2\times 200}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 200 for a, -9 for b, and 120 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 200\times 120}}{2\times 200}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81-800\times 120}}{2\times 200}
Multiply -4 times 200.
x=\frac{-\left(-9\right)±\sqrt{81-96000}}{2\times 200}
Multiply -800 times 120.
x=\frac{-\left(-9\right)±\sqrt{-95919}}{2\times 200}
Add 81 to -96000.
x=\frac{-\left(-9\right)±\sqrt{95919}i}{2\times 200}
Take the square root of -95919.
x=\frac{9±\sqrt{95919}i}{2\times 200}
The opposite of -9 is 9.
x=\frac{9±\sqrt{95919}i}{400}
Multiply 2 times 200.
x=\frac{9+\sqrt{95919}i}{400}
Now solve the equation x=\frac{9±\sqrt{95919}i}{400} when ± is plus. Add 9 to i\sqrt{95919}.
x=\frac{-\sqrt{95919}i+9}{400}
Now solve the equation x=\frac{9±\sqrt{95919}i}{400} when ± is minus. Subtract i\sqrt{95919} from 9.
x=\frac{9+\sqrt{95919}i}{400} x=\frac{-\sqrt{95919}i+9}{400}
The equation is now solved.
200x^{2}-9x+120=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
200x^{2}-9x+120-120=-120
Subtract 120 from both sides of the equation.
200x^{2}-9x=-120
Subtracting 120 from itself leaves 0.
\frac{200x^{2}-9x}{200}=-\frac{120}{200}
Divide both sides by 200.
x^{2}-\frac{9}{200}x=-\frac{120}{200}
Dividing by 200 undoes the multiplication by 200.
x^{2}-\frac{9}{200}x=-\frac{3}{5}
Reduce the fraction \frac{-120}{200} to lowest terms by extracting and canceling out 40.
x^{2}-\frac{9}{200}x+\left(-\frac{9}{400}\right)^{2}=-\frac{3}{5}+\left(-\frac{9}{400}\right)^{2}
Divide -\frac{9}{200}, the coefficient of the x term, by 2 to get -\frac{9}{400}. Then add the square of -\frac{9}{400} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{9}{200}x+\frac{81}{160000}=-\frac{3}{5}+\frac{81}{160000}
Square -\frac{9}{400} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{9}{200}x+\frac{81}{160000}=-\frac{95919}{160000}
Add -\frac{3}{5} to \frac{81}{160000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{9}{400}\right)^{2}=-\frac{95919}{160000}
Factor x^{2}-\frac{9}{200}x+\frac{81}{160000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{400}\right)^{2}}=\sqrt{-\frac{95919}{160000}}
Take the square root of both sides of the equation.
x-\frac{9}{400}=\frac{\sqrt{95919}i}{400} x-\frac{9}{400}=-\frac{\sqrt{95919}i}{400}
Simplify.
x=\frac{9+\sqrt{95919}i}{400} x=\frac{-\sqrt{95919}i+9}{400}
Add \frac{9}{400} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}