Solve for n
n=8
n = \frac{25}{3} = 8\frac{1}{3} \approx 8.333333333
Share
Copied to clipboard
-3n^{2}+49n=200
Swap sides so that all variable terms are on the left hand side.
-3n^{2}+49n-200=0
Subtract 200 from both sides.
a+b=49 ab=-3\left(-200\right)=600
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -3n^{2}+an+bn-200. To find a and b, set up a system to be solved.
1,600 2,300 3,200 4,150 5,120 6,100 8,75 10,60 12,50 15,40 20,30 24,25
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 600.
1+600=601 2+300=302 3+200=203 4+150=154 5+120=125 6+100=106 8+75=83 10+60=70 12+50=62 15+40=55 20+30=50 24+25=49
Calculate the sum for each pair.
a=25 b=24
The solution is the pair that gives sum 49.
\left(-3n^{2}+25n\right)+\left(24n-200\right)
Rewrite -3n^{2}+49n-200 as \left(-3n^{2}+25n\right)+\left(24n-200\right).
-n\left(3n-25\right)+8\left(3n-25\right)
Factor out -n in the first and 8 in the second group.
\left(3n-25\right)\left(-n+8\right)
Factor out common term 3n-25 by using distributive property.
n=\frac{25}{3} n=8
To find equation solutions, solve 3n-25=0 and -n+8=0.
-3n^{2}+49n=200
Swap sides so that all variable terms are on the left hand side.
-3n^{2}+49n-200=0
Subtract 200 from both sides.
n=\frac{-49±\sqrt{49^{2}-4\left(-3\right)\left(-200\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 49 for b, and -200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-49±\sqrt{2401-4\left(-3\right)\left(-200\right)}}{2\left(-3\right)}
Square 49.
n=\frac{-49±\sqrt{2401+12\left(-200\right)}}{2\left(-3\right)}
Multiply -4 times -3.
n=\frac{-49±\sqrt{2401-2400}}{2\left(-3\right)}
Multiply 12 times -200.
n=\frac{-49±\sqrt{1}}{2\left(-3\right)}
Add 2401 to -2400.
n=\frac{-49±1}{2\left(-3\right)}
Take the square root of 1.
n=\frac{-49±1}{-6}
Multiply 2 times -3.
n=-\frac{48}{-6}
Now solve the equation n=\frac{-49±1}{-6} when ± is plus. Add -49 to 1.
n=8
Divide -48 by -6.
n=-\frac{50}{-6}
Now solve the equation n=\frac{-49±1}{-6} when ± is minus. Subtract 1 from -49.
n=\frac{25}{3}
Reduce the fraction \frac{-50}{-6} to lowest terms by extracting and canceling out 2.
n=8 n=\frac{25}{3}
The equation is now solved.
-3n^{2}+49n=200
Swap sides so that all variable terms are on the left hand side.
\frac{-3n^{2}+49n}{-3}=\frac{200}{-3}
Divide both sides by -3.
n^{2}+\frac{49}{-3}n=\frac{200}{-3}
Dividing by -3 undoes the multiplication by -3.
n^{2}-\frac{49}{3}n=\frac{200}{-3}
Divide 49 by -3.
n^{2}-\frac{49}{3}n=-\frac{200}{3}
Divide 200 by -3.
n^{2}-\frac{49}{3}n+\left(-\frac{49}{6}\right)^{2}=-\frac{200}{3}+\left(-\frac{49}{6}\right)^{2}
Divide -\frac{49}{3}, the coefficient of the x term, by 2 to get -\frac{49}{6}. Then add the square of -\frac{49}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-\frac{49}{3}n+\frac{2401}{36}=-\frac{200}{3}+\frac{2401}{36}
Square -\frac{49}{6} by squaring both the numerator and the denominator of the fraction.
n^{2}-\frac{49}{3}n+\frac{2401}{36}=\frac{1}{36}
Add -\frac{200}{3} to \frac{2401}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n-\frac{49}{6}\right)^{2}=\frac{1}{36}
Factor n^{2}-\frac{49}{3}n+\frac{2401}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{49}{6}\right)^{2}}=\sqrt{\frac{1}{36}}
Take the square root of both sides of the equation.
n-\frac{49}{6}=\frac{1}{6} n-\frac{49}{6}=-\frac{1}{6}
Simplify.
n=\frac{25}{3} n=8
Add \frac{49}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}