Evaluate
\frac{50}{9}\approx 5.555555556
Factor
\frac{2 \cdot 5 ^ {2}}{3 ^ {2}} = 5\frac{5}{9} = 5.555555555555555
Share
Copied to clipboard
\begin{array}{l}\phantom{36)}\phantom{1}\\36\overline{)200}\\\end{array}
Use the 1^{st} digit 2 from dividend 200
\begin{array}{l}\phantom{36)}0\phantom{2}\\36\overline{)200}\\\end{array}
Since 2 is less than 36, use the next digit 0 from dividend 200 and add 0 to the quotient
\begin{array}{l}\phantom{36)}0\phantom{3}\\36\overline{)200}\\\end{array}
Use the 2^{nd} digit 0 from dividend 200
\begin{array}{l}\phantom{36)}00\phantom{4}\\36\overline{)200}\\\end{array}
Since 20 is less than 36, use the next digit 0 from dividend 200 and add 0 to the quotient
\begin{array}{l}\phantom{36)}00\phantom{5}\\36\overline{)200}\\\end{array}
Use the 3^{rd} digit 0 from dividend 200
\begin{array}{l}\phantom{36)}005\phantom{6}\\36\overline{)200}\\\phantom{36)}\underline{\phantom{}180\phantom{}}\\\phantom{36)9}20\\\end{array}
Find closest multiple of 36 to 200. We see that 5 \times 36 = 180 is the nearest. Now subtract 180 from 200 to get reminder 20. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }20
Since 20 is less than 36, stop the division. The reminder is 20. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}