Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(200+x\right)^{2}=\left(2\sqrt{\left(100-x\right)^{2}+100^{2}}\right)^{2}
Square both sides of the equation.
40000+400x+x^{2}=\left(2\sqrt{\left(100-x\right)^{2}+100^{2}}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(200+x\right)^{2}.
40000+400x+x^{2}=\left(2\sqrt{10000-200x+x^{2}+100^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(100-x\right)^{2}.
40000+400x+x^{2}=\left(2\sqrt{10000-200x+x^{2}+10000}\right)^{2}
Calculate 100 to the power of 2 and get 10000.
40000+400x+x^{2}=\left(2\sqrt{20000-200x+x^{2}}\right)^{2}
Add 10000 and 10000 to get 20000.
40000+400x+x^{2}=2^{2}\left(\sqrt{20000-200x+x^{2}}\right)^{2}
Expand \left(2\sqrt{20000-200x+x^{2}}\right)^{2}.
40000+400x+x^{2}=4\left(\sqrt{20000-200x+x^{2}}\right)^{2}
Calculate 2 to the power of 2 and get 4.
40000+400x+x^{2}=4\left(20000-200x+x^{2}\right)
Calculate \sqrt{20000-200x+x^{2}} to the power of 2 and get 20000-200x+x^{2}.
40000+400x+x^{2}=80000-800x+4x^{2}
Use the distributive property to multiply 4 by 20000-200x+x^{2}.
40000+400x+x^{2}-80000=-800x+4x^{2}
Subtract 80000 from both sides.
-40000+400x+x^{2}=-800x+4x^{2}
Subtract 80000 from 40000 to get -40000.
-40000+400x+x^{2}+800x=4x^{2}
Add 800x to both sides.
-40000+1200x+x^{2}=4x^{2}
Combine 400x and 800x to get 1200x.
-40000+1200x+x^{2}-4x^{2}=0
Subtract 4x^{2} from both sides.
-40000+1200x-3x^{2}=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+1200x-40000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1200±\sqrt{1200^{2}-4\left(-3\right)\left(-40000\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 1200 for b, and -40000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1200±\sqrt{1440000-4\left(-3\right)\left(-40000\right)}}{2\left(-3\right)}
Square 1200.
x=\frac{-1200±\sqrt{1440000+12\left(-40000\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-1200±\sqrt{1440000-480000}}{2\left(-3\right)}
Multiply 12 times -40000.
x=\frac{-1200±\sqrt{960000}}{2\left(-3\right)}
Add 1440000 to -480000.
x=\frac{-1200±400\sqrt{6}}{2\left(-3\right)}
Take the square root of 960000.
x=\frac{-1200±400\sqrt{6}}{-6}
Multiply 2 times -3.
x=\frac{400\sqrt{6}-1200}{-6}
Now solve the equation x=\frac{-1200±400\sqrt{6}}{-6} when ± is plus. Add -1200 to 400\sqrt{6}.
x=-\frac{200\sqrt{6}}{3}+200
Divide -1200+400\sqrt{6} by -6.
x=\frac{-400\sqrt{6}-1200}{-6}
Now solve the equation x=\frac{-1200±400\sqrt{6}}{-6} when ± is minus. Subtract 400\sqrt{6} from -1200.
x=\frac{200\sqrt{6}}{3}+200
Divide -1200-400\sqrt{6} by -6.
x=-\frac{200\sqrt{6}}{3}+200 x=\frac{200\sqrt{6}}{3}+200
The equation is now solved.
200-\frac{200\sqrt{6}}{3}+200=2\sqrt{\left(100-\left(-\frac{200\sqrt{6}}{3}+200\right)\right)^{2}+100^{2}}
Substitute -\frac{200\sqrt{6}}{3}+200 for x in the equation 200+x=2\sqrt{\left(100-x\right)^{2}+100^{2}}.
400-\frac{200}{3}\times 6^{\frac{1}{2}}=400-\frac{200}{3}\times 6^{\frac{1}{2}}
Simplify. The value x=-\frac{200\sqrt{6}}{3}+200 satisfies the equation.
200+\frac{200\sqrt{6}}{3}+200=2\sqrt{\left(100-\left(\frac{200\sqrt{6}}{3}+200\right)\right)^{2}+100^{2}}
Substitute \frac{200\sqrt{6}}{3}+200 for x in the equation 200+x=2\sqrt{\left(100-x\right)^{2}+100^{2}}.
400+\frac{200}{3}\times 6^{\frac{1}{2}}=400+\frac{200}{3}\times 6^{\frac{1}{2}}
Simplify. The value x=\frac{200\sqrt{6}}{3}+200 satisfies the equation.
x=-\frac{200\sqrt{6}}{3}+200 x=\frac{200\sqrt{6}}{3}+200
List all solutions of x+200=2\sqrt{\left(100-x\right)^{2}+10000}.