20.000 = \frac { 5 u } { 100 } + \frac { 10 . \frac { 5 x } { 100 } } { 100 }
Solve for u
u=-\frac{x}{10}+400
Solve for x
x=4000-10u
Graph
Share
Copied to clipboard
2000=5u+10\times \frac{5x}{100}
Multiply both sides of the equation by 100.
2000=5u+10\times \frac{1}{20}x
Divide 5x by 100 to get \frac{1}{20}x.
2000=5u+\frac{1}{2}x
Multiply 10 and \frac{1}{20} to get \frac{1}{2}.
5u+\frac{1}{2}x=2000
Swap sides so that all variable terms are on the left hand side.
5u=2000-\frac{1}{2}x
Subtract \frac{1}{2}x from both sides.
5u=-\frac{x}{2}+2000
The equation is in standard form.
\frac{5u}{5}=\frac{-\frac{x}{2}+2000}{5}
Divide both sides by 5.
u=\frac{-\frac{x}{2}+2000}{5}
Dividing by 5 undoes the multiplication by 5.
u=-\frac{x}{10}+400
Divide 2000-\frac{x}{2} by 5.
2000=5u+10\times \frac{5x}{100}
Multiply both sides of the equation by 100.
2000=5u+10\times \frac{1}{20}x
Divide 5x by 100 to get \frac{1}{20}x.
2000=5u+\frac{1}{2}x
Multiply 10 and \frac{1}{20} to get \frac{1}{2}.
5u+\frac{1}{2}x=2000
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}x=2000-5u
Subtract 5u from both sides.
\frac{\frac{1}{2}x}{\frac{1}{2}}=\frac{2000-5u}{\frac{1}{2}}
Multiply both sides by 2.
x=\frac{2000-5u}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x=4000-10u
Divide 2000-5u by \frac{1}{2} by multiplying 2000-5u by the reciprocal of \frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}