Skip to main content
Solve for x
Tick mark Image
Graph

Share

2000\left(1+\frac{2x}{100}\right)\times 25\times 20\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiply both sides of the equation by 100.
2000\left(1+\frac{1}{50}x\right)\times 25\times 20\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Divide 2x by 100 to get \frac{1}{50}x.
50000\left(1+\frac{1}{50}x\right)\times 20\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiply 2000 and 25 to get 50000.
1000000\left(1+\frac{1}{50}x\right)\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiply 50000 and 20 to get 1000000.
\left(1000000+1000000\times \frac{1}{50}x\right)\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Use the distributive property to multiply 1000000 by 1+\frac{1}{50}x.
\left(1000000+\frac{1000000}{50}x\right)\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiply 1000000 and \frac{1}{50} to get \frac{1000000}{50}.
\left(1000000+20000x\right)\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Divide 1000000 by 50 to get 20000.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Apply the distributive property by multiplying each term of 1000000+20000x by each term of 1-\frac{\frac{3x}{10}}{100}.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{3}{50}x\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Divide 6x by 100 to get \frac{3}{50}x.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+2000\left(1+\frac{3}{50}x\right)\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiply 500 and 4 to get 2000.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(1+\frac{3}{50}x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiply 2000 and 20 to get 40000.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+\left(40000+40000\times \frac{3}{50}x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Use the distributive property to multiply 40000 by 1+\frac{3}{50}x.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+\left(40000+\frac{40000\times 3}{50}x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Express 40000\times \frac{3}{50} as a single fraction.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+\left(40000+\frac{120000}{50}x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiply 40000 and 3 to get 120000.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+\left(40000+2400x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Divide 120000 by 50 to get 2400.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Apply the distributive property by multiplying each term of 40000+2400x by each term of 1-\frac{\frac{x}{4}}{100}.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Add 1000000 and 40000 to get 1040000.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Combine 20000x and 2400x to get 22400x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{1}{50}x\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Divide 2x by 100 to get \frac{1}{50}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500\left(1+\frac{1}{50}x\right)+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiply 20 and 25 to get 500.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+500\times \frac{1}{50}x+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Use the distributive property to multiply 500 by 1+\frac{1}{50}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+\frac{500}{50}x+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiply 500 and \frac{1}{50} to get \frac{500}{50}.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Divide 500 by 50 to get 10.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+5\left(1+\frac{3}{50}x\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Divide 6x by 100 to get \frac{3}{50}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20\left(1+\frac{3}{50}x\right)\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiply 5 and 4 to get 20.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20+20\times \frac{3}{50}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Use the distributive property to multiply 20 by 1+\frac{3}{50}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20+\frac{20\times 3}{50}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Express 20\times \frac{3}{50} as a single fraction.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20+\frac{60}{50}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiply 20 and 3 to get 60.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20+\frac{6}{5}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Reduce the fraction \frac{60}{50} to lowest terms by extracting and canceling out 10.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(520+10x+\frac{6}{5}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Add 500 and 20 to get 520.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(520+\frac{56}{5}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Combine 10x and \frac{6}{5}x to get \frac{56}{5}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=2000\left(520+\frac{56}{5}x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiply 100 and 20 to get 2000.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=\left(1040000+2000\times \frac{56}{5}x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Use the distributive property to multiply 2000 by 520+\frac{56}{5}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=\left(1040000+\frac{2000\times 56}{5}x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Express 2000\times \frac{56}{5} as a single fraction.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=\left(1040000+\frac{112000}{5}x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiply 2000 and 56 to get 112000.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=\left(1040000+22400x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Divide 112000 by 5 to get 22400.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=1040000+1040000\left(-\frac{\frac{5x}{18}}{100}\right)+22400x+22400x\left(-\frac{\frac{5x}{18}}{100}\right)
Apply the distributive property by multiplying each term of 1040000+22400x by each term of 1-\frac{\frac{5x}{18}}{100}.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000=1040000\left(-\frac{\frac{5x}{18}}{100}\right)+22400x+22400x\left(-\frac{\frac{5x}{18}}{100}\right)
Subtract 1040000 from both sides.
1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=1040000\left(-\frac{\frac{5x}{18}}{100}\right)+22400x+22400x\left(-\frac{\frac{5x}{18}}{100}\right)
Subtract 1040000 from 1040000 to get 0.
1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000\left(-\frac{\frac{5x}{18}}{100}\right)=22400x+22400x\left(-\frac{\frac{5x}{18}}{100}\right)
Subtract 1040000\left(-\frac{\frac{5x}{18}}{100}\right) from both sides.
1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000\left(-\frac{\frac{5x}{18}}{100}\right)-22400x=22400x\left(-\frac{\frac{5x}{18}}{100}\right)
Subtract 22400x from both sides.
1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000\left(-\frac{\frac{5x}{18}}{100}\right)-22400x-22400x\left(-\frac{\frac{5x}{18}}{100}\right)=0
Subtract 22400x\left(-\frac{\frac{5x}{18}}{100}\right) from both sides.
100\left(1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000\left(-\frac{\frac{5x}{18}}{100}\right)-22400x\right)-2240000x\left(-\frac{\frac{5x}{18}}{100}\right)=0
Multiply both sides of the equation by 100.
100\left(2400x\left(-\frac{x}{4\times 100}\right)+20000x\left(-\frac{3x}{10\times 100}\right)+40000\left(-\frac{x}{4\times 100}\right)+1000000\left(-\frac{3x}{10\times 100}\right)+22400x-1040000\left(-\frac{5x}{18\times 100}\right)-22400x\right)-2240000x\left(-\frac{5x}{18\times 100}\right)=0
Reorder the terms.
100\left(2400x\left(-1\right)\times \frac{x}{4\times 100}+20000x\left(-1\right)\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Multiply 40000 and -1 to get -40000. Multiply 1000000 and -1 to get -1000000. Multiply -1 and 1040000 to get -1040000.
100\left(-2400x\times \frac{x}{4\times 100}+20000x\left(-1\right)\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Multiply 2400 and -1 to get -2400.
100\left(-2400x\times \frac{x}{400}+20000x\left(-1\right)\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Multiply 4 and 100 to get 400.
100\left(-6xx+20000x\left(-1\right)\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Cancel out 400, the greatest common factor in 2400 and 400.
100\left(-6xx-20000x\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Multiply 20000 and -1 to get -20000.
100\left(-6xx-20000x\times \frac{3x}{1000}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Multiply 10 and 100 to get 1000.
100\left(-6xx-20\times 3xx-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Cancel out 1000, the greatest common factor in 20000 and 1000.
100\left(-6xx-20\times 3xx-40000\times \frac{x}{400}-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Multiply 4 and 100 to get 400.
100\left(-6xx-20\times 3xx-100x-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Cancel out 400, the greatest common factor in 40000 and 400.
100\left(-6xx-20\times 3xx-100x-1000000\times \frac{3x}{1000}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Multiply 10 and 100 to get 1000.
100\left(-6xx-20\times 3xx-100x-1000\times 3x+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Cancel out 1000, the greatest common factor in 1000000 and 1000.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Combine -100x and 22400x to get 22300x.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+1040000\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Multiply -1040000 and -1 to get 1040000.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+1040000\times \frac{x}{18\times 20}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Cancel out 5 in both numerator and denominator.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+1040000\times \frac{x}{360}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Multiply 18 and 20 to get 360.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+\frac{1040000x}{360}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Express 1040000\times \frac{x}{360} as a single fraction.
100\left(-6xx-20\times 3xx-100x-1000\times 3x+\frac{1040000x}{360}\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Combine 22300x and -22400x to get -100x.
100\left(-6xx-60xx-100x-3000x+\frac{1040000x}{360}\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Multiply -20 and 3 to get -60. Multiply -1000 and 3 to get -3000.
100\left(-66xx-100x-3000x+\frac{1040000x}{360}\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Combine -6xx and -60xx to get -66xx.
100\left(-66xx-3100x+\frac{1040000x}{360}\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Combine -100x and -3000x to get -3100x.
-6600x^{2}-310000x+100\times \frac{1040000x}{360}-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Use the distributive property to multiply 100 by -66xx-3100x+\frac{1040000x}{360}.
-6600x^{2}-310000x+100\times \frac{26000}{9}x-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Divide 1040000x by 360 to get \frac{26000}{9}x.
-6600x^{2}-310000x+\frac{100\times 26000}{9}x-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Express 100\times \frac{26000}{9} as a single fraction.
-6600x^{2}-310000x+\frac{2600000}{9}x-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Multiply 100 and 26000 to get 2600000.
-6600x^{2}-\frac{190000}{9}x-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Combine -310000x and \frac{2600000}{9}x to get -\frac{190000}{9}x.
-6600x^{2}-\frac{190000}{9}x+2240000x\times \frac{5x}{18\times 100}=0
Multiply -2240000 and -1 to get 2240000.
-6600x^{2}-\frac{190000}{9}x+2240000x\times \frac{x}{18\times 20}=0
Cancel out 5 in both numerator and denominator.
-6600x^{2}-\frac{190000}{9}x+2240000x\times \frac{x}{360}=0
Multiply 18 and 20 to get 360.
-6600x^{2}-\frac{190000}{9}x+\frac{2240000x}{360}x=0
Express 2240000\times \frac{x}{360} as a single fraction.
-6600x^{2}-\frac{190000}{9}x+\frac{56000}{9}xx=0
Divide 2240000x by 360 to get \frac{56000}{9}x.
-6600x^{2}-\frac{190000}{9}x+\frac{56000}{9}x^{2}=0
Multiply x and x to get x^{2}.
-\frac{3400}{9}x^{2}-\frac{190000}{9}x=0
Combine -6600x^{2} and \frac{56000}{9}x^{2} to get -\frac{3400}{9}x^{2}.
x=\frac{-\left(-\frac{190000}{9}\right)±\sqrt{\left(-\frac{190000}{9}\right)^{2}}}{2\left(-\frac{3400}{9}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{3400}{9} for a, -\frac{190000}{9} for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{190000}{9}\right)±\frac{190000}{9}}{2\left(-\frac{3400}{9}\right)}
Take the square root of \left(-\frac{190000}{9}\right)^{2}.
x=\frac{\frac{190000}{9}±\frac{190000}{9}}{2\left(-\frac{3400}{9}\right)}
The opposite of -\frac{190000}{9} is \frac{190000}{9}.
x=\frac{\frac{190000}{9}±\frac{190000}{9}}{-\frac{6800}{9}}
Multiply 2 times -\frac{3400}{9}.
x=\frac{\frac{380000}{9}}{-\frac{6800}{9}}
Now solve the equation x=\frac{\frac{190000}{9}±\frac{190000}{9}}{-\frac{6800}{9}} when ± is plus. Add \frac{190000}{9} to \frac{190000}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{950}{17}
Divide \frac{380000}{9} by -\frac{6800}{9} by multiplying \frac{380000}{9} by the reciprocal of -\frac{6800}{9}.
x=\frac{0}{-\frac{6800}{9}}
Now solve the equation x=\frac{\frac{190000}{9}±\frac{190000}{9}}{-\frac{6800}{9}} when ± is minus. Subtract \frac{190000}{9} from \frac{190000}{9} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=0
Divide 0 by -\frac{6800}{9} by multiplying 0 by the reciprocal of -\frac{6800}{9}.
x=-\frac{950}{17} x=0
The equation is now solved.
2000\left(1+\frac{2x}{100}\right)\times 25\times 20\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiply both sides of the equation by 100.
2000\left(1+\frac{1}{50}x\right)\times 25\times 20\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Divide 2x by 100 to get \frac{1}{50}x.
50000\left(1+\frac{1}{50}x\right)\times 20\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiply 2000 and 25 to get 50000.
1000000\left(1+\frac{1}{50}x\right)\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiply 50000 and 20 to get 1000000.
\left(1000000+1000000\times \frac{1}{50}x\right)\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Use the distributive property to multiply 1000000 by 1+\frac{1}{50}x.
\left(1000000+\frac{1000000}{50}x\right)\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiply 1000000 and \frac{1}{50} to get \frac{1000000}{50}.
\left(1000000+20000x\right)\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Divide 1000000 by 50 to get 20000.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Apply the distributive property by multiplying each term of 1000000+20000x by each term of 1-\frac{\frac{3x}{10}}{100}.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{3}{50}x\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Divide 6x by 100 to get \frac{3}{50}x.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+2000\left(1+\frac{3}{50}x\right)\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiply 500 and 4 to get 2000.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(1+\frac{3}{50}x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiply 2000 and 20 to get 40000.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+\left(40000+40000\times \frac{3}{50}x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Use the distributive property to multiply 40000 by 1+\frac{3}{50}x.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+\left(40000+\frac{40000\times 3}{50}x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Express 40000\times \frac{3}{50} as a single fraction.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+\left(40000+\frac{120000}{50}x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiply 40000 and 3 to get 120000.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+\left(40000+2400x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Divide 120000 by 50 to get 2400.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Apply the distributive property by multiplying each term of 40000+2400x by each term of 1-\frac{\frac{x}{4}}{100}.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Add 1000000 and 40000 to get 1040000.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Combine 20000x and 2400x to get 22400x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{1}{50}x\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Divide 2x by 100 to get \frac{1}{50}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500\left(1+\frac{1}{50}x\right)+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiply 20 and 25 to get 500.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+500\times \frac{1}{50}x+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Use the distributive property to multiply 500 by 1+\frac{1}{50}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+\frac{500}{50}x+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiply 500 and \frac{1}{50} to get \frac{500}{50}.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Divide 500 by 50 to get 10.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+5\left(1+\frac{3}{50}x\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Divide 6x by 100 to get \frac{3}{50}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20\left(1+\frac{3}{50}x\right)\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiply 5 and 4 to get 20.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20+20\times \frac{3}{50}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Use the distributive property to multiply 20 by 1+\frac{3}{50}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20+\frac{20\times 3}{50}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Express 20\times \frac{3}{50} as a single fraction.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20+\frac{60}{50}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiply 20 and 3 to get 60.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20+\frac{6}{5}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Reduce the fraction \frac{60}{50} to lowest terms by extracting and canceling out 10.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(520+10x+\frac{6}{5}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Add 500 and 20 to get 520.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(520+\frac{56}{5}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Combine 10x and \frac{6}{5}x to get \frac{56}{5}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=2000\left(520+\frac{56}{5}x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiply 100 and 20 to get 2000.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=\left(1040000+2000\times \frac{56}{5}x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Use the distributive property to multiply 2000 by 520+\frac{56}{5}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=\left(1040000+\frac{2000\times 56}{5}x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Express 2000\times \frac{56}{5} as a single fraction.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=\left(1040000+\frac{112000}{5}x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiply 2000 and 56 to get 112000.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=\left(1040000+22400x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Divide 112000 by 5 to get 22400.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=1040000+1040000\left(-\frac{\frac{5x}{18}}{100}\right)+22400x+22400x\left(-\frac{\frac{5x}{18}}{100}\right)
Apply the distributive property by multiplying each term of 1040000+22400x by each term of 1-\frac{\frac{5x}{18}}{100}.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000\left(-\frac{\frac{5x}{18}}{100}\right)=1040000+22400x+22400x\left(-\frac{\frac{5x}{18}}{100}\right)
Subtract 1040000\left(-\frac{\frac{5x}{18}}{100}\right) from both sides.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000\left(-\frac{\frac{5x}{18}}{100}\right)-22400x=1040000+22400x\left(-\frac{\frac{5x}{18}}{100}\right)
Subtract 22400x from both sides.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000\left(-\frac{\frac{5x}{18}}{100}\right)-22400x-22400x\left(-\frac{\frac{5x}{18}}{100}\right)=1040000
Subtract 22400x\left(-\frac{\frac{5x}{18}}{100}\right) from both sides.
100\left(1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000\left(-\frac{\frac{5x}{18}}{100}\right)-22400x\right)-2240000x\left(-\frac{\frac{5x}{18}}{100}\right)=104000000
Multiply both sides of the equation by 100.
100\left(2400x\left(-\frac{x}{4\times 100}\right)+20000x\left(-\frac{3x}{10\times 100}\right)+40000\left(-\frac{x}{4\times 100}\right)+1000000\left(-\frac{3x}{10\times 100}\right)+22400x+1040000-1040000\left(-\frac{5x}{18\times 100}\right)-22400x\right)-2240000x\left(-\frac{5x}{18\times 100}\right)=104000000
Reorder the terms.
100\left(2400x\left(-1\right)\times \frac{x}{4\times 100}+20000x\left(-1\right)\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Multiply 40000 and -1 to get -40000. Multiply 1000000 and -1 to get -1000000. Multiply -1 and 1040000 to get -1040000.
100\left(-2400x\times \frac{x}{4\times 100}+20000x\left(-1\right)\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Multiply 2400 and -1 to get -2400.
100\left(-2400x\times \frac{x}{400}+20000x\left(-1\right)\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Multiply 4 and 100 to get 400.
100\left(-6xx+20000x\left(-1\right)\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Cancel out 400, the greatest common factor in 2400 and 400.
100\left(-6xx-20000x\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Multiply 20000 and -1 to get -20000.
100\left(-6xx-20000x\times \frac{3x}{1000}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Multiply 10 and 100 to get 1000.
100\left(-6xx-20\times 3xx-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Cancel out 1000, the greatest common factor in 20000 and 1000.
100\left(-6xx-20\times 3xx-40000\times \frac{x}{400}-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Multiply 4 and 100 to get 400.
100\left(-6xx-20\times 3xx-100x-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Cancel out 400, the greatest common factor in 40000 and 400.
100\left(-6xx-20\times 3xx-100x-1000000\times \frac{3x}{1000}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Multiply 10 and 100 to get 1000.
100\left(-6xx-20\times 3xx-100x-1000\times 3x+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Cancel out 1000, the greatest common factor in 1000000 and 1000.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Combine -100x and 22400x to get 22300x.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+1040000+1040000\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Multiply -1040000 and -1 to get 1040000.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+1040000+1040000\times \frac{x}{18\times 20}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Cancel out 5 in both numerator and denominator.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+1040000+1040000\times \frac{x}{360}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Multiply 18 and 20 to get 360.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+1040000+\frac{1040000x}{360}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Express 1040000\times \frac{x}{360} as a single fraction.
100\left(-6xx-20\times 3xx-100x-1000\times 3x+1040000+\frac{1040000x}{360}\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Combine 22300x and -22400x to get -100x.
100\left(-6xx-60xx-100x-3000x+1040000+\frac{1040000x}{360}\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Multiply -20 and 3 to get -60. Multiply -1000 and 3 to get -3000.
100\left(-66xx-100x-3000x+1040000+\frac{1040000x}{360}\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Combine -6xx and -60xx to get -66xx.
100\left(-66xx-3100x+1040000+\frac{1040000x}{360}\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Combine -100x and -3000x to get -3100x.
-6600x^{2}-310000x+104000000+100\times \frac{1040000x}{360}-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Use the distributive property to multiply 100 by -66xx-3100x+1040000+\frac{1040000x}{360}.
-6600x^{2}-310000x+104000000+100\times \frac{26000}{9}x-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Divide 1040000x by 360 to get \frac{26000}{9}x.
-6600x^{2}-310000x+104000000+\frac{100\times 26000}{9}x-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Express 100\times \frac{26000}{9} as a single fraction.
-6600x^{2}-310000x+104000000+\frac{2600000}{9}x-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Multiply 100 and 26000 to get 2600000.
-6600x^{2}-\frac{190000}{9}x+104000000-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Combine -310000x and \frac{2600000}{9}x to get -\frac{190000}{9}x.
-6600x^{2}-\frac{190000}{9}x+104000000+2240000x\times \frac{5x}{18\times 100}=104000000
Multiply -2240000 and -1 to get 2240000.
-6600x^{2}-\frac{190000}{9}x+104000000+2240000x\times \frac{x}{18\times 20}=104000000
Cancel out 5 in both numerator and denominator.
-6600x^{2}-\frac{190000}{9}x+104000000+2240000x\times \frac{x}{360}=104000000
Multiply 18 and 20 to get 360.
-6600x^{2}-\frac{190000}{9}x+104000000+\frac{2240000x}{360}x=104000000
Express 2240000\times \frac{x}{360} as a single fraction.
-6600x^{2}-\frac{190000}{9}x+104000000+\frac{56000}{9}xx=104000000
Divide 2240000x by 360 to get \frac{56000}{9}x.
-6600x^{2}-\frac{190000}{9}x+104000000+\frac{56000}{9}x^{2}=104000000
Multiply x and x to get x^{2}.
-\frac{3400}{9}x^{2}-\frac{190000}{9}x+104000000=104000000
Combine -6600x^{2} and \frac{56000}{9}x^{2} to get -\frac{3400}{9}x^{2}.
-\frac{3400}{9}x^{2}-\frac{190000}{9}x=104000000-104000000
Subtract 104000000 from both sides.
-\frac{3400}{9}x^{2}-\frac{190000}{9}x=0
Subtract 104000000 from 104000000 to get 0.
\frac{-\frac{3400}{9}x^{2}-\frac{190000}{9}x}{-\frac{3400}{9}}=\frac{0}{-\frac{3400}{9}}
Divide both sides of the equation by -\frac{3400}{9}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{190000}{9}}{-\frac{3400}{9}}\right)x=\frac{0}{-\frac{3400}{9}}
Dividing by -\frac{3400}{9} undoes the multiplication by -\frac{3400}{9}.
x^{2}+\frac{950}{17}x=\frac{0}{-\frac{3400}{9}}
Divide -\frac{190000}{9} by -\frac{3400}{9} by multiplying -\frac{190000}{9} by the reciprocal of -\frac{3400}{9}.
x^{2}+\frac{950}{17}x=0
Divide 0 by -\frac{3400}{9} by multiplying 0 by the reciprocal of -\frac{3400}{9}.
x^{2}+\frac{950}{17}x+\left(\frac{475}{17}\right)^{2}=\left(\frac{475}{17}\right)^{2}
Divide \frac{950}{17}, the coefficient of the x term, by 2 to get \frac{475}{17}. Then add the square of \frac{475}{17} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{950}{17}x+\frac{225625}{289}=\frac{225625}{289}
Square \frac{475}{17} by squaring both the numerator and the denominator of the fraction.
\left(x+\frac{475}{17}\right)^{2}=\frac{225625}{289}
Factor x^{2}+\frac{950}{17}x+\frac{225625}{289}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{475}{17}\right)^{2}}=\sqrt{\frac{225625}{289}}
Take the square root of both sides of the equation.
x+\frac{475}{17}=\frac{475}{17} x+\frac{475}{17}=-\frac{475}{17}
Simplify.
x=0 x=-\frac{950}{17}
Subtract \frac{475}{17} from both sides of the equation.