Solve for x_2
\left\{\begin{matrix}\\x_{2}=-\frac{x_{1}}{2}\text{, }&\text{unconditionally}\\x_{2}\in \mathrm{R}\text{, }&x_{1}=0\end{matrix}\right.
Solve for x_1
x_{1}=-2x_{2}
x_{1}=0
Share
Copied to clipboard
40x_{1}x_{2}=-20x_{1}^{2}
Subtract 20x_{1}^{2} from both sides. Anything subtracted from zero gives its negation.
\frac{40x_{1}x_{2}}{40x_{1}}=-\frac{20x_{1}^{2}}{40x_{1}}
Divide both sides by 40x_{1}.
x_{2}=-\frac{20x_{1}^{2}}{40x_{1}}
Dividing by 40x_{1} undoes the multiplication by 40x_{1}.
x_{2}=-\frac{x_{1}}{2}
Divide -20x_{1}^{2} by 40x_{1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}