Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

20t^{2}+t-2=0
Substitute t for x^{2}.
t=\frac{-1±\sqrt{1^{2}-4\times 20\left(-2\right)}}{2\times 20}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 20 for a, 1 for b, and -2 for c in the quadratic formula.
t=\frac{-1±\sqrt{161}}{40}
Do the calculations.
t=\frac{\sqrt{161}-1}{40} t=\frac{-\sqrt{161}-1}{40}
Solve the equation t=\frac{-1±\sqrt{161}}{40} when ± is plus and when ± is minus.
x=-\sqrt{\frac{\sqrt{161}-1}{40}} x=\sqrt{\frac{\sqrt{161}-1}{40}} x=-i\sqrt{\frac{\sqrt{161}+1}{40}} x=i\sqrt{\frac{\sqrt{161}+1}{40}}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
20t^{2}+t-2=0
Substitute t for x^{2}.
t=\frac{-1±\sqrt{1^{2}-4\times 20\left(-2\right)}}{2\times 20}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 20 for a, 1 for b, and -2 for c in the quadratic formula.
t=\frac{-1±\sqrt{161}}{40}
Do the calculations.
t=\frac{\sqrt{161}-1}{40} t=\frac{-\sqrt{161}-1}{40}
Solve the equation t=\frac{-1±\sqrt{161}}{40} when ± is plus and when ± is minus.
x=\frac{\sqrt{\frac{\sqrt{161}-1}{10}}}{2} x=-\frac{\sqrt{\frac{\sqrt{161}-1}{10}}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.