Factor
\left(4x+7\right)\left(5x+4\right)
Evaluate
\left(4x+7\right)\left(5x+4\right)
Graph
Share
Copied to clipboard
a+b=51 ab=20\times 28=560
Factor the expression by grouping. First, the expression needs to be rewritten as 20x^{2}+ax+bx+28. To find a and b, set up a system to be solved.
1,560 2,280 4,140 5,112 7,80 8,70 10,56 14,40 16,35 20,28
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 560.
1+560=561 2+280=282 4+140=144 5+112=117 7+80=87 8+70=78 10+56=66 14+40=54 16+35=51 20+28=48
Calculate the sum for each pair.
a=16 b=35
The solution is the pair that gives sum 51.
\left(20x^{2}+16x\right)+\left(35x+28\right)
Rewrite 20x^{2}+51x+28 as \left(20x^{2}+16x\right)+\left(35x+28\right).
4x\left(5x+4\right)+7\left(5x+4\right)
Factor out 4x in the first and 7 in the second group.
\left(5x+4\right)\left(4x+7\right)
Factor out common term 5x+4 by using distributive property.
20x^{2}+51x+28=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-51±\sqrt{51^{2}-4\times 20\times 28}}{2\times 20}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-51±\sqrt{2601-4\times 20\times 28}}{2\times 20}
Square 51.
x=\frac{-51±\sqrt{2601-80\times 28}}{2\times 20}
Multiply -4 times 20.
x=\frac{-51±\sqrt{2601-2240}}{2\times 20}
Multiply -80 times 28.
x=\frac{-51±\sqrt{361}}{2\times 20}
Add 2601 to -2240.
x=\frac{-51±19}{2\times 20}
Take the square root of 361.
x=\frac{-51±19}{40}
Multiply 2 times 20.
x=-\frac{32}{40}
Now solve the equation x=\frac{-51±19}{40} when ± is plus. Add -51 to 19.
x=-\frac{4}{5}
Reduce the fraction \frac{-32}{40} to lowest terms by extracting and canceling out 8.
x=-\frac{70}{40}
Now solve the equation x=\frac{-51±19}{40} when ± is minus. Subtract 19 from -51.
x=-\frac{7}{4}
Reduce the fraction \frac{-70}{40} to lowest terms by extracting and canceling out 10.
20x^{2}+51x+28=20\left(x-\left(-\frac{4}{5}\right)\right)\left(x-\left(-\frac{7}{4}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{4}{5} for x_{1} and -\frac{7}{4} for x_{2}.
20x^{2}+51x+28=20\left(x+\frac{4}{5}\right)\left(x+\frac{7}{4}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
20x^{2}+51x+28=20\times \frac{5x+4}{5}\left(x+\frac{7}{4}\right)
Add \frac{4}{5} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
20x^{2}+51x+28=20\times \frac{5x+4}{5}\times \frac{4x+7}{4}
Add \frac{7}{4} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
20x^{2}+51x+28=20\times \frac{\left(5x+4\right)\left(4x+7\right)}{5\times 4}
Multiply \frac{5x+4}{5} times \frac{4x+7}{4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
20x^{2}+51x+28=20\times \frac{\left(5x+4\right)\left(4x+7\right)}{20}
Multiply 5 times 4.
20x^{2}+51x+28=\left(5x+4\right)\left(4x+7\right)
Cancel out 20, the greatest common factor in 20 and 20.
x ^ 2 +\frac{51}{20}x +\frac{7}{5} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 20
r + s = -\frac{51}{20} rs = \frac{7}{5}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{51}{40} - u s = -\frac{51}{40} + u
Two numbers r and s sum up to -\frac{51}{20} exactly when the average of the two numbers is \frac{1}{2}*-\frac{51}{20} = -\frac{51}{40}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{51}{40} - u) (-\frac{51}{40} + u) = \frac{7}{5}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{7}{5}
\frac{2601}{1600} - u^2 = \frac{7}{5}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{7}{5}-\frac{2601}{1600} = -\frac{361}{1600}
Simplify the expression by subtracting \frac{2601}{1600} on both sides
u^2 = \frac{361}{1600} u = \pm\sqrt{\frac{361}{1600}} = \pm \frac{19}{40}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{51}{40} - \frac{19}{40} = -1.750 s = -\frac{51}{40} + \frac{19}{40} = -0.800
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}