Solve for x (complex solution)
x=-\frac{\sqrt{10}i}{10}\approx -0-0.316227766i
x=\frac{\sqrt{10}i}{10}\approx 0.316227766i
Graph
Share
Copied to clipboard
20x^{2}=1-3
Subtract 3 from both sides.
20x^{2}=-2
Subtract 3 from 1 to get -2.
x^{2}=\frac{-2}{20}
Divide both sides by 20.
x^{2}=-\frac{1}{10}
Reduce the fraction \frac{-2}{20} to lowest terms by extracting and canceling out 2.
x=\frac{\sqrt{10}i}{10} x=-\frac{\sqrt{10}i}{10}
The equation is now solved.
20x^{2}+3-1=0
Subtract 1 from both sides.
20x^{2}+2=0
Subtract 1 from 3 to get 2.
x=\frac{0±\sqrt{0^{2}-4\times 20\times 2}}{2\times 20}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 20 for a, 0 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 20\times 2}}{2\times 20}
Square 0.
x=\frac{0±\sqrt{-80\times 2}}{2\times 20}
Multiply -4 times 20.
x=\frac{0±\sqrt{-160}}{2\times 20}
Multiply -80 times 2.
x=\frac{0±4\sqrt{10}i}{2\times 20}
Take the square root of -160.
x=\frac{0±4\sqrt{10}i}{40}
Multiply 2 times 20.
x=\frac{\sqrt{10}i}{10}
Now solve the equation x=\frac{0±4\sqrt{10}i}{40} when ± is plus.
x=-\frac{\sqrt{10}i}{10}
Now solve the equation x=\frac{0±4\sqrt{10}i}{40} when ± is minus.
x=\frac{\sqrt{10}i}{10} x=-\frac{\sqrt{10}i}{10}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}