Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

20x^{2}=1-3
Subtract 3 from both sides.
20x^{2}=-2
Subtract 3 from 1 to get -2.
x^{2}=\frac{-2}{20}
Divide both sides by 20.
x^{2}=-\frac{1}{10}
Reduce the fraction \frac{-2}{20} to lowest terms by extracting and canceling out 2.
x=\frac{\sqrt{10}i}{10} x=-\frac{\sqrt{10}i}{10}
The equation is now solved.
20x^{2}+3-1=0
Subtract 1 from both sides.
20x^{2}+2=0
Subtract 1 from 3 to get 2.
x=\frac{0±\sqrt{0^{2}-4\times 20\times 2}}{2\times 20}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 20 for a, 0 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 20\times 2}}{2\times 20}
Square 0.
x=\frac{0±\sqrt{-80\times 2}}{2\times 20}
Multiply -4 times 20.
x=\frac{0±\sqrt{-160}}{2\times 20}
Multiply -80 times 2.
x=\frac{0±4\sqrt{10}i}{2\times 20}
Take the square root of -160.
x=\frac{0±4\sqrt{10}i}{40}
Multiply 2 times 20.
x=\frac{\sqrt{10}i}{10}
Now solve the equation x=\frac{0±4\sqrt{10}i}{40} when ± is plus.
x=-\frac{\sqrt{10}i}{10}
Now solve the equation x=\frac{0±4\sqrt{10}i}{40} when ± is minus.
x=\frac{\sqrt{10}i}{10} x=-\frac{\sqrt{10}i}{10}
The equation is now solved.