Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

5\left(4x^{2}+3x\right)
Factor out 5.
x\left(4x+3\right)
Consider 4x^{2}+3x. Factor out x.
5x\left(4x+3\right)
Rewrite the complete factored expression.
20x^{2}+15x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-15±\sqrt{15^{2}}}{2\times 20}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-15±15}{2\times 20}
Take the square root of 15^{2}.
x=\frac{-15±15}{40}
Multiply 2 times 20.
x=\frac{0}{40}
Now solve the equation x=\frac{-15±15}{40} when ± is plus. Add -15 to 15.
x=0
Divide 0 by 40.
x=-\frac{30}{40}
Now solve the equation x=\frac{-15±15}{40} when ± is minus. Subtract 15 from -15.
x=-\frac{3}{4}
Reduce the fraction \frac{-30}{40} to lowest terms by extracting and canceling out 10.
20x^{2}+15x=20x\left(x-\left(-\frac{3}{4}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{3}{4} for x_{2}.
20x^{2}+15x=20x\left(x+\frac{3}{4}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
20x^{2}+15x=20x\times \frac{4x+3}{4}
Add \frac{3}{4} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
20x^{2}+15x=5x\left(4x+3\right)
Cancel out 4, the greatest common factor in 20 and 4.