Solve for n
n = \frac{\sqrt{1441} + 49}{20} \approx 4.34802529
n=\frac{49-\sqrt{1441}}{20}\approx 0.55197471
Share
Copied to clipboard
20n^{2}-98n=-48
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
20n^{2}-98n-\left(-48\right)=-48-\left(-48\right)
Add 48 to both sides of the equation.
20n^{2}-98n-\left(-48\right)=0
Subtracting -48 from itself leaves 0.
20n^{2}-98n+48=0
Subtract -48 from 0.
n=\frac{-\left(-98\right)±\sqrt{\left(-98\right)^{2}-4\times 20\times 48}}{2\times 20}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 20 for a, -98 for b, and 48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-98\right)±\sqrt{9604-4\times 20\times 48}}{2\times 20}
Square -98.
n=\frac{-\left(-98\right)±\sqrt{9604-80\times 48}}{2\times 20}
Multiply -4 times 20.
n=\frac{-\left(-98\right)±\sqrt{9604-3840}}{2\times 20}
Multiply -80 times 48.
n=\frac{-\left(-98\right)±\sqrt{5764}}{2\times 20}
Add 9604 to -3840.
n=\frac{-\left(-98\right)±2\sqrt{1441}}{2\times 20}
Take the square root of 5764.
n=\frac{98±2\sqrt{1441}}{2\times 20}
The opposite of -98 is 98.
n=\frac{98±2\sqrt{1441}}{40}
Multiply 2 times 20.
n=\frac{2\sqrt{1441}+98}{40}
Now solve the equation n=\frac{98±2\sqrt{1441}}{40} when ± is plus. Add 98 to 2\sqrt{1441}.
n=\frac{\sqrt{1441}+49}{20}
Divide 98+2\sqrt{1441} by 40.
n=\frac{98-2\sqrt{1441}}{40}
Now solve the equation n=\frac{98±2\sqrt{1441}}{40} when ± is minus. Subtract 2\sqrt{1441} from 98.
n=\frac{49-\sqrt{1441}}{20}
Divide 98-2\sqrt{1441} by 40.
n=\frac{\sqrt{1441}+49}{20} n=\frac{49-\sqrt{1441}}{20}
The equation is now solved.
20n^{2}-98n=-48
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{20n^{2}-98n}{20}=-\frac{48}{20}
Divide both sides by 20.
n^{2}+\left(-\frac{98}{20}\right)n=-\frac{48}{20}
Dividing by 20 undoes the multiplication by 20.
n^{2}-\frac{49}{10}n=-\frac{48}{20}
Reduce the fraction \frac{-98}{20} to lowest terms by extracting and canceling out 2.
n^{2}-\frac{49}{10}n=-\frac{12}{5}
Reduce the fraction \frac{-48}{20} to lowest terms by extracting and canceling out 4.
n^{2}-\frac{49}{10}n+\left(-\frac{49}{20}\right)^{2}=-\frac{12}{5}+\left(-\frac{49}{20}\right)^{2}
Divide -\frac{49}{10}, the coefficient of the x term, by 2 to get -\frac{49}{20}. Then add the square of -\frac{49}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-\frac{49}{10}n+\frac{2401}{400}=-\frac{12}{5}+\frac{2401}{400}
Square -\frac{49}{20} by squaring both the numerator and the denominator of the fraction.
n^{2}-\frac{49}{10}n+\frac{2401}{400}=\frac{1441}{400}
Add -\frac{12}{5} to \frac{2401}{400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n-\frac{49}{20}\right)^{2}=\frac{1441}{400}
Factor n^{2}-\frac{49}{10}n+\frac{2401}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{49}{20}\right)^{2}}=\sqrt{\frac{1441}{400}}
Take the square root of both sides of the equation.
n-\frac{49}{20}=\frac{\sqrt{1441}}{20} n-\frac{49}{20}=-\frac{\sqrt{1441}}{20}
Simplify.
n=\frac{\sqrt{1441}+49}{20} n=\frac{49-\sqrt{1441}}{20}
Add \frac{49}{20} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}