Solve for m
m=2
m=0
Share
Copied to clipboard
m\left(20m-40\right)=0
Factor out m.
m=0 m=2
To find equation solutions, solve m=0 and 20m-40=0.
20m^{2}-40m=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}}}{2\times 20}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 20 for a, -40 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-40\right)±40}{2\times 20}
Take the square root of \left(-40\right)^{2}.
m=\frac{40±40}{2\times 20}
The opposite of -40 is 40.
m=\frac{40±40}{40}
Multiply 2 times 20.
m=\frac{80}{40}
Now solve the equation m=\frac{40±40}{40} when ± is plus. Add 40 to 40.
m=2
Divide 80 by 40.
m=\frac{0}{40}
Now solve the equation m=\frac{40±40}{40} when ± is minus. Subtract 40 from 40.
m=0
Divide 0 by 40.
m=2 m=0
The equation is now solved.
20m^{2}-40m=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{20m^{2}-40m}{20}=\frac{0}{20}
Divide both sides by 20.
m^{2}+\left(-\frac{40}{20}\right)m=\frac{0}{20}
Dividing by 20 undoes the multiplication by 20.
m^{2}-2m=\frac{0}{20}
Divide -40 by 20.
m^{2}-2m=0
Divide 0 by 20.
m^{2}-2m+1=1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
\left(m-1\right)^{2}=1
Factor m^{2}-2m+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-1\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
m-1=1 m-1=-1
Simplify.
m=2 m=0
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}