Factor
\left(4c+5\right)\left(5c+3\right)
Evaluate
\left(4c+5\right)\left(5c+3\right)
Share
Copied to clipboard
a+b=37 ab=20\times 15=300
Factor the expression by grouping. First, the expression needs to be rewritten as 20c^{2}+ac+bc+15. To find a and b, set up a system to be solved.
1,300 2,150 3,100 4,75 5,60 6,50 10,30 12,25 15,20
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 300.
1+300=301 2+150=152 3+100=103 4+75=79 5+60=65 6+50=56 10+30=40 12+25=37 15+20=35
Calculate the sum for each pair.
a=12 b=25
The solution is the pair that gives sum 37.
\left(20c^{2}+12c\right)+\left(25c+15\right)
Rewrite 20c^{2}+37c+15 as \left(20c^{2}+12c\right)+\left(25c+15\right).
4c\left(5c+3\right)+5\left(5c+3\right)
Factor out 4c in the first and 5 in the second group.
\left(5c+3\right)\left(4c+5\right)
Factor out common term 5c+3 by using distributive property.
20c^{2}+37c+15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
c=\frac{-37±\sqrt{37^{2}-4\times 20\times 15}}{2\times 20}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
c=\frac{-37±\sqrt{1369-4\times 20\times 15}}{2\times 20}
Square 37.
c=\frac{-37±\sqrt{1369-80\times 15}}{2\times 20}
Multiply -4 times 20.
c=\frac{-37±\sqrt{1369-1200}}{2\times 20}
Multiply -80 times 15.
c=\frac{-37±\sqrt{169}}{2\times 20}
Add 1369 to -1200.
c=\frac{-37±13}{2\times 20}
Take the square root of 169.
c=\frac{-37±13}{40}
Multiply 2 times 20.
c=-\frac{24}{40}
Now solve the equation c=\frac{-37±13}{40} when ± is plus. Add -37 to 13.
c=-\frac{3}{5}
Reduce the fraction \frac{-24}{40} to lowest terms by extracting and canceling out 8.
c=-\frac{50}{40}
Now solve the equation c=\frac{-37±13}{40} when ± is minus. Subtract 13 from -37.
c=-\frac{5}{4}
Reduce the fraction \frac{-50}{40} to lowest terms by extracting and canceling out 10.
20c^{2}+37c+15=20\left(c-\left(-\frac{3}{5}\right)\right)\left(c-\left(-\frac{5}{4}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{3}{5} for x_{1} and -\frac{5}{4} for x_{2}.
20c^{2}+37c+15=20\left(c+\frac{3}{5}\right)\left(c+\frac{5}{4}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
20c^{2}+37c+15=20\times \frac{5c+3}{5}\left(c+\frac{5}{4}\right)
Add \frac{3}{5} to c by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
20c^{2}+37c+15=20\times \frac{5c+3}{5}\times \frac{4c+5}{4}
Add \frac{5}{4} to c by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
20c^{2}+37c+15=20\times \frac{\left(5c+3\right)\left(4c+5\right)}{5\times 4}
Multiply \frac{5c+3}{5} times \frac{4c+5}{4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
20c^{2}+37c+15=20\times \frac{\left(5c+3\right)\left(4c+5\right)}{20}
Multiply 5 times 4.
20c^{2}+37c+15=\left(5c+3\right)\left(4c+5\right)
Cancel out 20, the greatest common factor in 20 and 20.
x ^ 2 +\frac{37}{20}x +\frac{3}{4} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 20
r + s = -\frac{37}{20} rs = \frac{3}{4}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{37}{40} - u s = -\frac{37}{40} + u
Two numbers r and s sum up to -\frac{37}{20} exactly when the average of the two numbers is \frac{1}{2}*-\frac{37}{20} = -\frac{37}{40}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{37}{40} - u) (-\frac{37}{40} + u) = \frac{3}{4}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{3}{4}
\frac{1369}{1600} - u^2 = \frac{3}{4}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{3}{4}-\frac{1369}{1600} = -\frac{169}{1600}
Simplify the expression by subtracting \frac{1369}{1600} on both sides
u^2 = \frac{169}{1600} u = \pm\sqrt{\frac{169}{1600}} = \pm \frac{13}{40}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{37}{40} - \frac{13}{40} = -1.250 s = -\frac{37}{40} + \frac{13}{40} = -0.600
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}