Solve for b
b=2\sqrt{21}+10\approx 19.16515139
b=10-2\sqrt{21}\approx 0.83484861
Share
Copied to clipboard
-b^{2}+20b=16
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-b^{2}+20b-16=16-16
Subtract 16 from both sides of the equation.
-b^{2}+20b-16=0
Subtracting 16 from itself leaves 0.
b=\frac{-20±\sqrt{20^{2}-4\left(-1\right)\left(-16\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 20 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-20±\sqrt{400-4\left(-1\right)\left(-16\right)}}{2\left(-1\right)}
Square 20.
b=\frac{-20±\sqrt{400+4\left(-16\right)}}{2\left(-1\right)}
Multiply -4 times -1.
b=\frac{-20±\sqrt{400-64}}{2\left(-1\right)}
Multiply 4 times -16.
b=\frac{-20±\sqrt{336}}{2\left(-1\right)}
Add 400 to -64.
b=\frac{-20±4\sqrt{21}}{2\left(-1\right)}
Take the square root of 336.
b=\frac{-20±4\sqrt{21}}{-2}
Multiply 2 times -1.
b=\frac{4\sqrt{21}-20}{-2}
Now solve the equation b=\frac{-20±4\sqrt{21}}{-2} when ± is plus. Add -20 to 4\sqrt{21}.
b=10-2\sqrt{21}
Divide -20+4\sqrt{21} by -2.
b=\frac{-4\sqrt{21}-20}{-2}
Now solve the equation b=\frac{-20±4\sqrt{21}}{-2} when ± is minus. Subtract 4\sqrt{21} from -20.
b=2\sqrt{21}+10
Divide -20-4\sqrt{21} by -2.
b=10-2\sqrt{21} b=2\sqrt{21}+10
The equation is now solved.
-b^{2}+20b=16
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-b^{2}+20b}{-1}=\frac{16}{-1}
Divide both sides by -1.
b^{2}+\frac{20}{-1}b=\frac{16}{-1}
Dividing by -1 undoes the multiplication by -1.
b^{2}-20b=\frac{16}{-1}
Divide 20 by -1.
b^{2}-20b=-16
Divide 16 by -1.
b^{2}-20b+\left(-10\right)^{2}=-16+\left(-10\right)^{2}
Divide -20, the coefficient of the x term, by 2 to get -10. Then add the square of -10 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
b^{2}-20b+100=-16+100
Square -10.
b^{2}-20b+100=84
Add -16 to 100.
\left(b-10\right)^{2}=84
Factor b^{2}-20b+100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b-10\right)^{2}}=\sqrt{84}
Take the square root of both sides of the equation.
b-10=2\sqrt{21} b-10=-2\sqrt{21}
Simplify.
b=2\sqrt{21}+10 b=10-2\sqrt{21}
Add 10 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}