Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

n+2\left(n^{2}-\frac{n\left(n+1\right)}{2}\right)=\frac{3000}{20}
Divide both sides by 20.
n+2\left(n^{2}-\frac{n\left(n+1\right)}{2}\right)=150
Divide 3000 by 20 to get 150.
2n+4\left(n^{2}-\frac{n\left(n+1\right)}{2}\right)=300
Multiply both sides of the equation by 2.
2n+4\left(n^{2}-\frac{n^{2}+n}{2}\right)=300
Use the distributive property to multiply n by n+1.
2n+4n^{2}+4\left(-\frac{n^{2}+n}{2}\right)=300
Use the distributive property to multiply 4 by n^{2}-\frac{n^{2}+n}{2}.
2n+4n^{2}-2\left(n^{2}+n\right)=300
Cancel out 2, the greatest common factor in 4 and 2.
2n+4n^{2}-2n^{2}-2n=300
Use the distributive property to multiply -2 by n^{2}+n.
2n+2n^{2}-2n=300
Combine 4n^{2} and -2n^{2} to get 2n^{2}.
2n^{2}=300
Combine 2n and -2n to get 0.
n^{2}=\frac{300}{2}
Divide both sides by 2.
n^{2}=150
Divide 300 by 2 to get 150.
n=5\sqrt{6} n=-5\sqrt{6}
Take the square root of both sides of the equation.
n+2\left(n^{2}-\frac{n\left(n+1\right)}{2}\right)=\frac{3000}{20}
Divide both sides by 20.
n+2\left(n^{2}-\frac{n\left(n+1\right)}{2}\right)=150
Divide 3000 by 20 to get 150.
2n+4\left(n^{2}-\frac{n\left(n+1\right)}{2}\right)=300
Multiply both sides of the equation by 2.
2n+4\left(n^{2}-\frac{n^{2}+n}{2}\right)=300
Use the distributive property to multiply n by n+1.
2n+4n^{2}+4\left(-\frac{n^{2}+n}{2}\right)=300
Use the distributive property to multiply 4 by n^{2}-\frac{n^{2}+n}{2}.
2n+4n^{2}-2\left(n^{2}+n\right)=300
Cancel out 2, the greatest common factor in 4 and 2.
2n+4n^{2}-2n^{2}-2n=300
Use the distributive property to multiply -2 by n^{2}+n.
2n+2n^{2}-2n=300
Combine 4n^{2} and -2n^{2} to get 2n^{2}.
2n^{2}=300
Combine 2n and -2n to get 0.
2n^{2}-300=0
Subtract 300 from both sides.
n=\frac{0±\sqrt{0^{2}-4\times 2\left(-300\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and -300 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{0±\sqrt{-4\times 2\left(-300\right)}}{2\times 2}
Square 0.
n=\frac{0±\sqrt{-8\left(-300\right)}}{2\times 2}
Multiply -4 times 2.
n=\frac{0±\sqrt{2400}}{2\times 2}
Multiply -8 times -300.
n=\frac{0±20\sqrt{6}}{2\times 2}
Take the square root of 2400.
n=\frac{0±20\sqrt{6}}{4}
Multiply 2 times 2.
n=5\sqrt{6}
Now solve the equation n=\frac{0±20\sqrt{6}}{4} when ± is plus.
n=-5\sqrt{6}
Now solve the equation n=\frac{0±20\sqrt{6}}{4} when ± is minus.
n=5\sqrt{6} n=-5\sqrt{6}
The equation is now solved.