Solve for n
n=5\sqrt{6}\approx 12.247448714
n=-5\sqrt{6}\approx -12.247448714
Quiz
Polynomial
5 problems similar to:
20 ( n + 2 ( n ^ { 2 } - \frac { n ( n + 1 ) } { 2 } ) ) = 3000
Share
Copied to clipboard
n+2\left(n^{2}-\frac{n\left(n+1\right)}{2}\right)=\frac{3000}{20}
Divide both sides by 20.
n+2\left(n^{2}-\frac{n\left(n+1\right)}{2}\right)=150
Divide 3000 by 20 to get 150.
2n+4\left(n^{2}-\frac{n\left(n+1\right)}{2}\right)=300
Multiply both sides of the equation by 2.
2n+4\left(n^{2}-\frac{n^{2}+n}{2}\right)=300
Use the distributive property to multiply n by n+1.
2n+4n^{2}+4\left(-\frac{n^{2}+n}{2}\right)=300
Use the distributive property to multiply 4 by n^{2}-\frac{n^{2}+n}{2}.
2n+4n^{2}-2\left(n^{2}+n\right)=300
Cancel out 2, the greatest common factor in 4 and 2.
2n+4n^{2}-2n^{2}-2n=300
Use the distributive property to multiply -2 by n^{2}+n.
2n+2n^{2}-2n=300
Combine 4n^{2} and -2n^{2} to get 2n^{2}.
2n^{2}=300
Combine 2n and -2n to get 0.
n^{2}=\frac{300}{2}
Divide both sides by 2.
n^{2}=150
Divide 300 by 2 to get 150.
n=5\sqrt{6} n=-5\sqrt{6}
Take the square root of both sides of the equation.
n+2\left(n^{2}-\frac{n\left(n+1\right)}{2}\right)=\frac{3000}{20}
Divide both sides by 20.
n+2\left(n^{2}-\frac{n\left(n+1\right)}{2}\right)=150
Divide 3000 by 20 to get 150.
2n+4\left(n^{2}-\frac{n\left(n+1\right)}{2}\right)=300
Multiply both sides of the equation by 2.
2n+4\left(n^{2}-\frac{n^{2}+n}{2}\right)=300
Use the distributive property to multiply n by n+1.
2n+4n^{2}+4\left(-\frac{n^{2}+n}{2}\right)=300
Use the distributive property to multiply 4 by n^{2}-\frac{n^{2}+n}{2}.
2n+4n^{2}-2\left(n^{2}+n\right)=300
Cancel out 2, the greatest common factor in 4 and 2.
2n+4n^{2}-2n^{2}-2n=300
Use the distributive property to multiply -2 by n^{2}+n.
2n+2n^{2}-2n=300
Combine 4n^{2} and -2n^{2} to get 2n^{2}.
2n^{2}=300
Combine 2n and -2n to get 0.
2n^{2}-300=0
Subtract 300 from both sides.
n=\frac{0±\sqrt{0^{2}-4\times 2\left(-300\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and -300 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{0±\sqrt{-4\times 2\left(-300\right)}}{2\times 2}
Square 0.
n=\frac{0±\sqrt{-8\left(-300\right)}}{2\times 2}
Multiply -4 times 2.
n=\frac{0±\sqrt{2400}}{2\times 2}
Multiply -8 times -300.
n=\frac{0±20\sqrt{6}}{2\times 2}
Take the square root of 2400.
n=\frac{0±20\sqrt{6}}{4}
Multiply 2 times 2.
n=5\sqrt{6}
Now solve the equation n=\frac{0±20\sqrt{6}}{4} when ± is plus.
n=-5\sqrt{6}
Now solve the equation n=\frac{0±20\sqrt{6}}{4} when ± is minus.
n=5\sqrt{6} n=-5\sqrt{6}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}